CSE333, Fall 2023

YA/ UNIVERSITY of WASHINGTON L09: References, Const, Classes

C++ References, Const, Classes
CSE 333 Fall 2023

Instructor: Chris Thachuk

Teaching Assistants:

Ann Baturytski Humza Lala
Yuquan Deng Alan Li

Noa Ferman Leanna Mi Nguyen
James Froelich Chanh Truong
Hannah Jiang Jennifer Xu

Yegor Kuznetsov

w UNIVERSITY of WASHINGTON L09: References, Const, Classes CSE333, Fall 2023

Relevant Course Information (1/2)

+ Exercise 4 due Wednesday by 10pm

" Hardest exercise (Rating: 5)

« Exercise 5 due Thursday by 10 pm

= “Lighter” exercise in C++ (Rating: 1)

+» Homework 2 due October 30 by 10pm
= File system crawler, indexer, and search engine

= Note: 1ibhwl.a (yours or ours) and the . h files from hwl need
to be in right directory (~yourgit/hwl/)

= Note: use Ctrl-D to exit searchshell, test on directory of small
self-made files

W UNIVERSITY of WASHINGTON L09: References, Const, Classes CSE333, Fall 2023

Relevant Course Information (2/2)

+ Midterm information via Ed post tomorrow
= Covers scope, format, sample midterms (if applicable)

" Poll for interest on brief review session

- If sufficient interest session will be held Monday, October 23 @ 8pm
on Zoom.

YA/ UNIVERSITY of WASHINGTON

Lecture Outline

+ C++ References
& constin C++

« C++ Classes Intro

L09: References, Const, Classes

CSE333, Fall 2023

W UNIVERSITY of WASHINGTON L09: References, Const, Classes CSE333, Fall 2023

Note: Arrow points

Pointers Reminder to next instruction.

+ A pointer is a variable containing an address

= Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main (int argc, char** argv) {
int x =5, y = 10;
) int* z = &X;

Rz =R
x += 1; 10

z = &yy
Rz =R

return EXIT SUCCESS; z

. J
pointer.cc

W UNIVERSITY of WASHINGTON L09: References, Const, Classes CSE333, Fall 2023

Note: Arrow points

Pointers Reminder to next instruction.

+ A pointer is a variable containing an address

= Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main (int argc, char** argv) { D
int x = 5, y = 10; % 5
int* z = &x;
— <7 += 1;
x += 1; y 10
z = &y;
*7 4= ; \
return EXIT SUCCESS; z | O0x7£IE..ad
}
- y

pointer.cc

W UNIVERSITY of WASHINGTON L09: References, Const, Classes CSE333, Fall 2023

Note: Arrow points

Pointers Reminder to next instruction.

+ A pointer is a variable containing an address

= Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main (int argc, char** argv) { D
int x = 5, y = 10; % 6
int* z = &x;
*z += 1; // sets x to 6

— x += 1; - T
z = &yy
Rz =R ‘§\
return EXIT SUCCESS; z |0x7£0¢. a4
}
- y

pointer.cc

W UNIVERSITY of WASHINGTON L09: References, Const, Classes CSE333, Fall 2023

Note: Arrow points

Pointers Reminder to next instruction.

+ A pointer is a variable containing an address

= Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main (int argc, char** argv) { h
int x = 5, y = 10; X 7
int* z = &x;
*z += 1, // sets x to 6
x += 1; // sets x (and *z) to 7 y 10
return EXIT SUCCESS; z | 0x789¢.a4

}
\ J

pointer.cc

YA/ UNIVERSITY of WASHINGTON

L09: References, Const, Classes

Pointers Reminder

+ A pointer is a variable containing an address

CSE333, Fall 2023

Note: Arrow points
to next instruction.

= Modifying the pointer doesn’t modify what it points to, but you

can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main (int argc, char** argv) { 0
int x =5, y = 10;
int* z = &x;
*z += 1; // sets x to 6
x += 1; // sets x (and *z) to 7
z = &y; // sets z to the address of y
— k7 += 1;
return EXIT SUCCESS;
}
_ J

10

Ox7ﬁ5fma0

pointer.cc

W UNIVERSITY of WASHINGTON L09: References, Const, Classes CSE333, Fall 2023

Note: Arrow points

Pointers Reminder to next instruction.

+ A pointer is a variable containing an address

= Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main (int argc, char** argv) { h
int x = 5, y = 10; X 7
int* z = &x;
*z += 1; // sets x to 6
x += 1; // sets x (and *z) to 7 y 11
z = &y; // sets z to the address of y
*z 4= 1, // sets y (and *z) to 11

m—=Pp return EXIT SUCCESS; z Ox7f&f...a0
}
\ J

pointer.cc
10

YA/ UNIVERSITY of WASHINGTON

L09: References, Const, Classes

References

« A reference is an alias for another variable

CSE333, Fall 2023

Note: Arrow points
to next instruction.

= Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

" |ntroduced in C++ as part of the language

(int main (int argc, char** argv) { b

int x =5, y = 10;
—) int& z = X;
z += 1;
X += 1;
z = y;
z += 1;
return EXIT SUCCESS;
}
. J

reference.cc

Y 10

11

W UNIVERSITY of WASHINGTON LO9: References, Const, Classes CSE333, Fall 2023

Note: Arrow points

REferenceS to next instruction.

« A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable
- Mutating a reference is mutating the aliased variable

" |ntroduced in C++ as part of the language

(int main (int argc, char** argv) {
int x =5, y = 10;

X, Z 5
int& z = x; // binds the name "z" to x
— 7 += 1;
x += 1; y 10
zZ = y;
z += 1;

return EXIT SUCCESS;

}
\ J

reference.cc

12

W UNIVERSITY of WASHINGTON LO9: References, Const, Classes CSE333, Fall 2023

Note: Arrow points

REferenceS to next instruction.

« A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable
- Mutating a reference is mutating the aliased variable

" |ntroduced in C++ as part of the language

(int main (int argc, char** argv) { b
int x =5, y = 10; X, Z 6
int& z = x; // binds the name "z" to x
z += 1; // sets z (and x) to 6

—— X = 1; y 10
z =Y
z += 1;
return EXIT SUCCESS;
}
g J

reference.cc
13

W UNIVERSITY of WASHINGTON LO9: References, Const, Classes CSE333, Fall 2023

Note: Arrow points

REferenceS to next instruction.

« A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable
- Mutating a reference is mutating the aliased variable

" |ntroduced in C++ as part of the language

(int main (int argc, char** argv) { b
int x =5, y = 10; X, Z 7
int& z = x; // binds the name "z" to x
z += 1; // sets z (and x) to 6
x += 1; // sets x (and z) to 7 y 10

—) ; = y;
z += 1;
return EXIT SUCCESS;
}
g J

reference.cc
14

YA/ UNIVERSITY of WASHINGTON

L09: References, Const, Classes

References

« A reference is an alias for another variable

CSE333, Fall 2023

Note: Arrow points
to next instruction.

= Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

" |ntroduced in C++ as part of the language

(int main (int argc, char** argv) { h

int x =5, y = 10;

int& z = x; // binds the name "z" to x

z += 1; // sets z (and x) to 6

x += 1; // sets x (and z) to 7

z =1vy; // sets z (and x) to the value of y
— 7 += 1;

return EXIT SUCCESS;

X, Z 10

}
\ J

reference.cc

15

YA/ UNIVERSITY of WASHINGTON

L09: References, Const, Classes

CSE333, Fall 2023

References

« A reference is an alias for another variable

Note: Arrow points
to next instruction.

= Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

" |ntroduced in C++ as part of the language

(int main(int argc,
int x = 5, y =

int& z = x;
z += 1;
x += 1;
z =YV;
z += 1;

// sets z (and x)
// sets z (and x)

char** argv)

10;
// binds the name

// sets z (and x) to
// sets x (and z) to

m—=Pp return EXIT SUCCESS;

}

G

{

6
v

to the value of y
to 11

"Z" to X

11

J

reference.cc

16

W univ

ERSITY of WASHINGTON LO9: References, Const, Classes

Pass-By-Reference

+ C++ allows you to use real pass-by-reference

" Client passes in an argument with normal syntax

CSE333, Fall 2023

Note: Arrow points
to next instruction.

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

r

) Swap (a, b);

_

void Swap(inté& x, 1nté& y) { b
int tmp = x;
X =Yy
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

cout << "a: " <K<K a << "; b: " << b << endl;
return EXIT SUCCESS;

}

J

passbyreference.cc

(main) a

(main) b

10

17

YA/ UNIVERSITY of WASHINGTON

Pass-By-Reference

+ C++ allows you to use real pass-by-reference

" Client passes in an argument with normal syntax

L09: References, Const, Classes

CSE333, Fall 2023

Note: Arrow points
to next instruction.

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

fvoid Swap (1nté& x, 1inté& y) { A
) Nt tmp = Xx;
X =Yy
y = tmp;
}
int main(int argc, char** argv) {
int a = 5, b = 10;
Swap (a, b);
cout << "a: " <K<K a << "; b: " << b << endl;
return EXIT SUCCESS;
\} J

(main) a
5
(Swap) x
(main) b 10
(Swap) y
(Swap) tmp

passbyreference.cc

18

YA/ UNIVERSITY of WASHINGTON

Pass-By-Reference

+ C++ allows you to use real pass-by-reference

" Client passes in an argument with normal syntax

L09: References, Const, Classes

CSE333, Fall 2023

Note: Arrow points
to next instruction.

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

fvoid Swap (1nté& x, 1inté& y) { A
int tmp = x;
— X = Y
y = tmp;
}
int main(int argc, char** argv) {
int a = 5, b = 10;
Swap (a, b);
cout << "a: " <K<K a << "; b: " << b << endl;
return EXIT SUCCESS;
\} J

(main) a
5

(Swap) x
(main) b 10

(Swap) y
(Swap) tmp 5

passbyreference.cc

19

YA/ UNIVERSITY of WASHINGTON

Pass-By-Reference

+ C++ allows you to use real pass-by-reference

" Client passes in an argument with normal syntax

L09: References, Const, Classes

CSE333, Fall 2023

Note: Arrow points
to next instruction.

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

fvoid Swap (1nté& x, 1inté& y) { A
int tmp = x;
X = y;
—) v = tmp;
}
int main(int argc, char** argv) {
int a = 5, b = 10;
Swap (a, b);
cout << "a: " <K<K a << "; b: " << b << endl;
return EXIT SUCCESS;
\} J

(main) a 10
(Swap) x
(main) b 10
(Swap) y

(Swap) tmp 5

passbyreference.cc

20

YA/ UNIVERSITY of WASHINGTON

L09: References, Const, Classes

Pass-By-Reference

+ C++ allows you to use real pass-by-reference

" Client passes in an argument with normal syntax

CSE333, Fall 2023

Note: Arrow points
to next instruction.

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

f

void Swap(inté& x, 1inté& y) { A
int tmp = x;
X = y;
y = tmp;

q

int main(int argc, char** argv) {
int a = 5, b = 10;
Swap (a, b);
cout << "a: " <K<K a << "; b: " << b << endl;

)

return EXIT SUCCESS;

(main) a 10
(Swap) x
(main) b 5
(Swap) y

(Swap) tmp 5

J

passbyreference.cc

21

YA/ UNIVERSITY of WASHINGTON

Pass-By-Reference

+ C++ allows you to use real pass-by-reference

" Client passes in an argument with normal syntax

L09: References, Const, Classes

CSE333, Fall 2023

Note: Arrow points
to next instruction.

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

fvoid Swap (1nté& x, 1inté& y) { A
int tmp = x;
X =Yy
y = tmp;
}
int main(int argc, char** argv) {
int a = 5, b = 10;
Swap (a, b);
=y CcOUL << "a: " <K<K a << "; b: " <K< b << endl;
return EXIT SUCCESS;
\} J

(main) a

10

(main) b

passbyreference.cc

22

YA/ UNIVERSITY of WASHINGTON LO9: References, Const, Classes CSE333, Fall 2023

@ PO" Eve I‘YWhere pollev.com/cse333

What will happen when we try to compile and

run this code? | | | poll.cc
vold Foo (int& x, int* y, int z) {
A. Z = *3;
x += 2;
B. Output "(3,2,3)" y = &%;

}
C. Compiler error | o
int main(int argc, char** argv) {

about arguments int a = 1;
to Foo (in main) int b = 2;

int& ¢ = a;

D. Compiler error
about body of Foo

E. We're lost...

Foo (a, &b, c);
std::cout << " (" << a << ", " << Db
<< ", T KK e <<)" KL std:rendl;

return EXIT SUCCESS;

23

YA/ UNIVERSITY of WASHINGTON

Lecture Outline

& C++ References
+ constin C++

« C++ Classes Intro

L09: References, Const, Classes

CSE333, Fall 2023

24

YA/ UNIVERSITY of WASHINGTON LO9: References, Const, Classes CSE333, Fall 2023

const

% const: this cannot be changed/mutated

= Used much more in C++ thanin C

= Signal of intent to compiler; meaningless at hardware level
- Results in compile-time errors

(void BrokenPrintSquare (const int& 1) { b
i =1*i; // compiler error here!
std::cout << 1 << std::endl;

}
int main(int argc, char** argv) {
int j = 2;
BrokenPrintSquare (J) ;
return EXIT SUCCESS;
\} J

brokenpassbyrefconst.cc

25

w UNIVERSITY of WASHINGTON L09: References, Const, Classes CSE333, Fall 2023

const and Pointers

+ Pointers can change data in two different contexts:

1) You can change the value of the pointer

2) You can change the thing the pointer points to
(via dereference)

const can be used to prevent either/both of these

behaviors!

= const next to pointer name means you can’t change the value of
the pointer

= const next to data type pointed to means you can’t use this
pointer to change the thing being pointed to

= Tip: read variable declaration from right-to-left

26

YA/ UNIVERSITY of WASHINGTON

L09: References, Const, Classes CSE333, Fall 2023

const and Pointers

+» The syntax with pointers is confusing:

(int main (int argc, char** argv) { B
int x = 5; // 1int
const int y = 6; // (const int)
y++;
const int* z = &y; // pointer to a (const int)
Az =
Z++;
int* const w = &x; // (const pointer) to a (variable int)
*wo+= 1;
wt++;
const int* const v = &x; // (const pointer) to a (const int)
A=
v++;
return EXIT SUCCESS;
U y,

constmadness.cc ,7

W UNIVERSITY of WASHINGTON LO9: References, Const, Classes CSE333, Fall 2023

const and Pointers

+» The syntax with pointers is confusing:

[int main (int argc, char** argv) { B
int x = 5; // int
const int y = 6; // (const int)
y++; // compiler error
const int* z = &y; // pointer to a (const int)
*z += 1; // compiler error
Z++; // ok
int* const w = &x; // (const pointer) to a (variable int)
*wo+= 1; // ok
W+ // compiler error
const int* const v = &x; // (const pointer) to a (const int)
*v o+= 1; // compiler error
v++; // compiler error
return EXIT SUCCESS;
U J

constmadness.cc g

W UNIVERSITY of WASHINGTON L09: References, Const, Classes CSE333, Fall 2023

[]
const Parameters SmE
Make parameters const when you cavl \¥
+ Aconst parameter (void Foo (const int* y) { A
cannot be mutated inside |, T o0 TT Y ST srarendl
the function void Bar(int* y) {

std::cout << *y << std::endl;

" Therefore it does not }

matter if the argument can

int main(int argc, char** argv) {
be mutated or not

const int a = 10;
int b = 20;
< A non-const parameter Foo(sa); // OK
.. Foo (&b) ; // OK
may be mUtatEd InSIde Bar (&a) ; // not OK - error
the function Bar (sb); // OK
[| Compller Won’t Iet you return EXIT_SUCCESS;

. }
pass in const parameters .

29

YA/ UNIVERSITY of WASHINGTON

@ Poll Everywhere

L09: References, Const, Classes

pollev.com/cse333

What will happen when we try to compile and

run this code?

A.
B. Output "(2,4,3)"

C. Compiler error
about arguments
to Foo (in main)

D. Compiler error
about body of Foo

E. We're lost...

CSE333, Fall 2023

poll2.cc

rvoid Foo (int* const x,
int& y, int z) {
*x +=1;
y *= 2;
z —= 3;

}

int main(int argc, char** argv) {
const int a = 1;
int b = 2, ¢ = 3;

Foo(&a, b, c);
std::cout << " (" << a << "," << Db
<< "L, KK e K< ") KL stdrrendl;

return EXIT SUCCESS;

~\

W UNIVERSITY of WASHINGTON L09: References, Const, Classes CSE333, Fall 2023

When to Use References? gy

+ A stylistic choice, not mandated by the C++ language

+» Google C++ style guide suggests:

" |nput parameters:
- Either use values (for primitive types like int or small

structs/objects)
- Or use const references (for complex struct/object instances)

" Qutput parameters:
- Use const pointers
— Unchangeable pointers referencing changeable data

= QOrdering:
- List input parameters first, then output parameters last

void CalcArea (const inté& width, const inté& height,
int* const area) {
*area = width * height;

} styleguide.cc

31

YA/ UNIVERSITY of WASHINGTON

Lecture Outline

& C++ References
& constin C++

« C++ Classes Intro

L09: References, Const, Classes

CSE333, Fall 2023

32

W UNIVERSITY of WASHINGTON L09: References, Const, Classes CSE333, Fall 2023

Classes

+ Class definition syntax (in a . h file):

(class Name {
public:
// public member definitions & declarations go here

private:
// private member definitions & declarations go here

}Y; // class Name
. Y

= Members can be functions (methods) or data (variables)

« Class member function definition syntax (in a . cc file):

retType Name: :MethodName (typel paraml, .., typeN paramN) {
// body statements

}

= (1) define within the class definition or (2) declare within the class
definition and then define elsewhere

33

W UNIVERSITY of WASHINGTON L09: References, Const, Classes CSE333, Fall 2023

Class Organization

+ It's a little more complex than in C when modularizing
with struct definition:
= (Class definition is part of interface and should go in . h file
- Private members still must be included in definition (!)

= Usually put member function definitions into companion . cc file
with implementation details

- Common exception: setter and getter methods

" These files can also include non-member functions that use the
class

+ Unlike Java, you can name files anything you want

= Typically Name.ccand Name.hforclass Name

34

W UNIVERSITY of WASHINGTON L09: References, Const, Classes CSE333, Fall 2023

Const & Classes

+ Like other data types, objects can be declared as const:

" Once a const object has been constructed, its member variables
can’t be changed

= Can only invoke member functions that are labeled const

<« You can declare a member function of a class as const

" This means that it cannot modify the object it was called on

- The compiler will treat member variables as const inside the
function at compile time

= |f a member function doesn’t modify the object, mark it const!

35

YA/ UNIVERSITY of WASHINGTON LO9: References, Const, Classes CSE333, Fall 2023

I]
Class Definition (. h file) ST

Point.h \f
(#ifndef POINT H_ N
#define POINT H
class Point {
public:
Point (const int x, const int vy); // constructor
int get x() const { return x ; } // inline member function
int get y() const { return y ; } // inline member function
double Distance (const Point& p) const; // member function

void SetLocation(const int x, const int y); // member function

private:
int x ; // data member
int y ; // data member
}; // class Point

#endif // POINT H
" — y

36

W UNIVERSITY of WASHINGTON LO9: References, Const, Classes CSE333, Fall 2023

Class Member Definitions (. cc file)

Point.cc
(#include <cmath> R
#include "Point.h"
Point::Point (const int x, const int y) {
X = %;
this->y = vy; // "this->" is optional unless name conflicts

}

double Point::Distance(const Pointé& p) const {
// We can access p’s x and y variables either through the
// get x(), get y() accessor functions or the x , y private
// member variables directly, since we’re in a member
// function of the same class.
double distance = (x - p.get x()) * (x_ - p.get x());
distance += (y - p.y) * (y - p.y)’
return sqrt(distance);

}

void Point::SetLocation(const int x, const int y) {
X = Xy

y_ = y;
@ y

37

YA/ UNIVERSITY of WASHINGTON LO9: References, Const, Classes CSE333, Fall 2023

Class Usage (. cc file)

usepoint.cc
N

(#include <iostream>
#include <cstdlib>
#include "Point.h"

using namespace std;

int main(int argc, char** argv) {
Point pl (1, 2); // allocate a new Point on the Stack
Point p2(4, 6); // allocate a new Point on the Stack

cout << "pl is: (" << pl.get x() << ", ";
cout << pl.get y() << ")" << endl;

cout << "p2 is: (" << p2 .get_x() << ", vv’,
cout << p2.get y() << ")" << endl;

cout << "dist : " << pl.Distance(p2) << endl;

return EXIT SUCCESS;

38

YA/ UNIVERSITY of WASHINGTON L09: References, Const, Classes

Reading Assighment

+ Before next time, read the sections in C++ Primer covering

class constructors, copy constructors, assignment
(operator=), and destructors

= |gnore “move semantics” for now

" The table of contents and index are your friends...

CSE333, Fall 2023

39

