YA/ UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Fall 2023

File 1/0: Cstdio, Buffering, POSIX
CSE 333 Fall 2023

Instructor: Chris Thachuk

Teaching Assistants:

Ann Baturytski Humza Lala
Yuquan Deng Alan Li

Noa Ferman Leanna Mi Nguyen
James Froelich Chanh Truong
Hannah Jiang Jennifer Xu

Yegor Kuznetsov

YA/ UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Fall 2023

Relevant Course Information

+ Exercise 3 due Wednesday (10/11)
" Partners permitted; must declare with Gradescope submission

<+ Homework 1 due Friday (10/13)
= Clean up “to do” comments, but leave “STEP #” markers
= Graded not just on correctness, also code quality

" OH get crowded — come prepared to describe your incorrect
behavior and what you think the issue is and what you’ve tried

" Timely bonus: don’t tag hwl-final until you are really ready

+» Homework 2 (and next exercise) released soon

= Partner declaration form and matching form will be released after
the spec is released

YA/ UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Fall 2023

Lecture Outline

+ File 1/0 with the C standard library

« C Stream Buffering
+» POSIX Lower-Level 1/0

YA/ UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Fall 2023

File 1/O

«» We'll start by using C’s standard library
"= These functions are part of glibc on Linux

" They are implemented using Linux system calls (POSIX)

» C's stdio defines the notion of a stream

ﬁ&A sequence of characters that flows to and from a device
- Can be either text or binary; Linux does not distinguish l
coNn & e

= |s buffered by default; 1ibc reads ahead of your program /7(unbu-ﬁwa)
" Three streams provided by default: stdin, stdou\stderr

bosrd—> censle > convole
- You can open additional streams to read and write to files (bufferea)

= Cstreams are manipulated with @ FILE * pointer, which is
definedin stdio.h

YA/ UNIVERSITY of WASHINGTON LO6: File /O

C Stream Functions (1 of 2)

«» Some stream functions (complete list in stdio.h):
ML evor!

o @ fopen (filename, mode) ;]

- Opens a stream to the specified file in specified file access mode

-[int fclose(stream);]

- Closes the specified stream (and file)

-[int fprintf (stream, format, ...);]
- Writes a formatted C string
— printf (...); isequivalentto fprintf (stdout, ...);
-[int fscanf (stream, format, ...);]

- Reads data and stores data matching the format string

CSE333, Fall 2023

YA/ UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Fall 2023

C Stream Functions (2 of 2)

«» Some stream functions (complete list in stdio.h):

-[FILE* fopen (filename, mode);]

- Opens a stream to the specified file in specified file access mode

-[int fclose(stream);]

‘h‘ie_s 1o nove

- Closes the specified stream (and file) Size ¥ cone byles total

o —

. i . 4
-[51ze t fwrite (@ size, count, stream);]
__

7 : .
A of elen® Jb.\ Werites an array of count elements of size bytes from ptr to stream

//\
s ned \VA Pz ~
(9029 -[51ze_t fread (ptr, size, count, (stream);]

- Reads an array of count elements of size bytes from stream to ptr

YR
r,}r .

Wwser arrey/

YA/ UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Fall 2023

C Stream Error Checking/Handling

« Some error functions (complete list in stdio.h):

-[int ferror(stream);]

- Checks if the error indicator associated with the specified stream is
set

C [int clearerr (stream) ;]

- Resets error and EOF indicators for the specified stream

‘o ﬁ\l h
g [void perror (message) ;] \/[5 bl var

- Prints message followed by an error message related to/errno|to
stderr exteo info !

el loc /70—) 'FPYW\‘\’F(S’HGW‘J)) //Smsle) kn,pv\ ouse

metapt 52 f’error(hmr ertor msl‘)} H mitile posiide cawses

YA/ UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Fall 2023

C Streams Example

[#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#define READBUFSIZE 128

cp_example.c
1

int main(int argc, char** argv) {
FILE* fin;
FILE* fout; € stream varinbles
char readbuf [READBUFSIZE]; & arbilarily-sized budfter
size t readlen;

if (argc != 3) f./

fprintf (stderr, "usage: ./cp example infile outfile\n");
return EXIT FAILURE; // defined in stdlib.h
}

// Open the input file\/ file mstexist hen ““h'ﬁ
fin = fopen(argv[l], "rb"); // "rb" -> read, binary mode
if (fin == NULL) {
perror ("fopen for read failed"); &
return EXIT FAILURE;
}

Py;v\’_s Ho COhsoleJ even {'F yo Pi(:e, \oﬂﬁmwx 0»7\(’UV+

pv'v\'\) e b on suree & Creor

// next slide’s code

YA/ UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Fall 2023

C Streams Example
cp_example.c

rint main (int argc, char** argv) {

// previous slide’s code

when wr?}fnﬁ) fle creshed i & oot exist
// Open the output filea///

fout = fopen (argv([(2], "wb"); // "wb" -> write, binary mode
if (fout == NULL) {
perror ("fopen for write failed"); , /
fclose (fin); & makesure fo clen up for evey exit path
return EXIT FAILURE;

} * & b7+es acdually vead

// Read fromlgge file, write to fout

while ((readlen = fread(readbuf, 1, READBUFSIZE, fin)) > 0) {
// Test to see if we encountered an error while reading
if (ferror (fin)) { (dhrheck ¥ evior am\nmﬂHﬁkmwQ

perror ("fread failed"); ©® cwdlen=44

in) ; n=I28
oo b file of e SObpls, T

ot ' ‘Frmd (aHEO\ 4 4|'M'J: D ceodlen = 125 IO
return EXIT FAILURE; — o reod

// next slide’s code

CSE333, Fall 2023

YA/ UNIVERSITY of WASHINGTON LO6: File /O

C Streams Example

rint main (int argc, char** argv) {

cp_example.c

~

// two slides ago’s code

. , nﬁ”““d“i
// previous slide’s code gmm‘hfa\\

1f (fwrite (readbuf, 1, readlen, fout) < readlen) {
perror ("fwrite failed"); sehaething Lovons £ XA
fclose (fin) ; e QW requested bytes
fclose (fout) ;
return EXIT FAILURE;

}
} // end of while loop

I

fclose (fin) ;
n dwe will, H
fclose (fout) ;} close sheams Lhen dwe Wil Hem.

return EXIT SUCCESS;

11

YA/ UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Fall 2023

Lecture Outline

+ File I/O with the C standard library

+» C Stream Buffering
+» POSIX Lower-Level I/O

12

YA/ UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Fall 2023

Buffering

+» By default, stdio uses buffering for streams:

= Data written by fwrite () is copied into a buffer allocated by
stdio inside your process’ address space

= As some point, the buffer will be “drained” into the destination:
- When you explicitly call ££1ush () on the stream
- When the buffer size is exceeded (often 1024 or 4096 bytes)

- For stdout to console, when a newline is written (“line buffered”) or
when some other function tries to read from the console

- When you call £fclose () on the stream

- When your process exits gracefully (exit () or return from
main ())

13

YA/ UNIVERSITY of WASHINGTON LO6: File /O

CSE333, Fall 2023

Buffering Example

- : .
int main(int argc, char** argv) {
== IILE* fout = fopen ("test.txt", "wb");

// write "hi" one char at a time

m—p i (fwrite("h", sizeof(char), 1, fout)
perror ("fwrite failed");

fclose (fout) ;

return EXIT FAILURE;

}

e if (fwrite("i", sizeof(char), 1, fout)
perror ("fwrite failed");

fclose (fout);

return EXIT FAILURE;

}

=P fclose (fout);
return EXIT SUCCESS;

}

L

< 1)

< 1)

{

{

buffered_hi.c

C stdio buffer

lh'

li'

test.txt (disk)

lh'

Vi'

14

YA/ UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Fall 2023

No Buffering Example

(int main (int argc, char** argv) {

:>L> FILE* fout = fopen("test.txt", "wb");
setbuf (fout, NULL); // turn off buffering

// write "hi" one char at a time C stdio buffer
m—P if (fwrite("h", sizeof(char), 1, fout) < 1) { P
perror ("fwrite failed"); —t—

fclose (fout);
return EXIT FAILURE;

}

==l i (fwrite("i", sizeof (char), 1, fout) < 1) f{ test.txt (disk)
perror ("fwrite failed");
fclose (fout);

return EXIT FAILURE;

lh' li'

}

=P fclose (fout);
return EXIT SUCCESS;

}

. J

unbuffered_hi.c

15

YA/ UNIVERSITY of WASHINGTON

Why Buffer?

LO6: File I/O

« Performance — avoid disk accesses

" Group many small writes
into a single larger write

= Disk Latency =
(Jeff Dean from LADIS '09)

N
2 |
sers & De
oL o
<

< Convenience — nicer API

\

a0 e \
I nput EERL 1] ——————> oviput | Xeach
\ K T butler) Siream
Wndividval p P
. writes
/

CSE333, Fall 2023

Numbers Everyone Should Know

L1 cache reference 055 AB
Branch mispredict 5 ns
L2 cache reference 7 ns
Mutex lock/unlock 25 ns
Main memory reference 100 ns
Compress 1K bytes with Zippy 3,000 ns
Send 2K bytes over 1 Gbps network 20,000 ns
Read 1 MB sequentially from memory 250,000 ns
Round trip within same datacenter 500,000 ns
Disk seek 000,000 ns
Read 1 MB sequentially from disk 000,000 ns
Send packet CA->Netherlands->CA 150,000,000 ns

= We'll compare C’'s £read () with POSIX’s read ()

16

YA/ UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Fall 2023

Why NOT Buffer?

L)

Reliability — the buffer needs to be flushed

= |oss of computer power = loss of data

= “Completion” of a write (i.e., return from £fwrite ()) does not
mean the data has actually been written

- What if you signal another process to read the file you just wrote to?

Performance — buffering takes time

= Copying data into the stdio buffer consumes CPU cycles and
memory bandwidth

= Can potentially slow down high-performance applications, like a
web server or database (“zero-copy”)

Mﬁmy Sm“ writes lov‘gc weites

When is buffering faster?/SIower?

17

YA/ UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Fall 2023

Lecture Outline

+ File I/O with the C standard library

« C Stream Buffering
+» POSIX Lower-Level 1/O

18

YA/ UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Fall 2023

From C to POSIX

+» Most UNIX-en support a common set of lower-level file
access APls: POSIX — Portable Operating System Interface
" open(), read(),write(),close (), lseek ()
- Similar in spirit to their £* () counterparts from the Cstd lib
- Lower-level and unbuffered compared to their counterparts
- Also less convenient

= You will have to use these to read file system directories and for
network I/0, so we might as well learn them now

- These are functionalities that C stdio doesn’t provide!

19

LO6: File 1/O

CSE333, Fall 2023

YA/ UNIVERSITY of WASHINGTON

open/close

+» To open a file:

= Pass in the filename and access mode (similar to fopen)

= Get back a “file descriptor”
- Similarto FILE* from fopen, butisjustan int

« -1 indicates an error

((#include <fcntl.h> // for open/) A
#include <unistd.h> // for close()
P Lilename Gess mode
int fd = open("foo.txt", O RDONLY) ;
if (fd == -1) {
perror ("open failed"):;
exit (EXIT_FAILURE) H
}
¢ '(lle ()\QSLV'\F‘Q\I‘
close (fd) ;
_ J

« Open descriptors: 0 (stdin), 1 (stdout), 2 (stderr)

20

YA/ UNIVERSITY of WASHINGTON

LO6: File 1/O

CSE333, Fall 2023

Reading from a File

Try 4o cesh count byles

')
%[ssize_t read (int(fd) void* buf, size t count);]

= Advances forward in the file by number
of bytes read

= Returns the number of bytes read
- Might be fewer bytes than you requested (!!!
- Returns O if you’re already at the end-of-file
- Returns -1 on error (and sets errno)

these &€ (= EBADE': bad file descriptor

'\r\eb‘ o . .
aet EFAULT : output bufferis not a valid address
e\ﬂrno.lf\

EINTR: read was interrupted, please try again (ARGH!!!! &)

FEAGATIN: no data currently available
And many others...

21

YA/ UNIVERSITY of WASHINGTON LO6: File 1/0

@ Poll Everywhere

CSE333, Fall 2023

pollev.com/cse333

We want to read ‘n’ bytes. Which is the correct
w?

completion of the blank belo

rchar* buf = ...; // buffer of size n

int bytes left = n;

int result; // result of read()

while (bytes left > 0) {
esult = read (fd, , bytes left);
1f (result == -1) {
| if (errno != EINTR && errno != EAGAIN)

// a real error happened,

// so return an error result
}
// EINTR or EAGAIN happened,

/ so do nothing and try again
continue;

}
bytes left -= result;

~

d Aot vead only g5t /3 brks
b\ﬁes_le‘H' = L'r\./'S

\ouif V22 l
,(\—[,,)(Ar\'k V\QX+ ﬁ?C\b —l\’

A. stact ording heve
B. buf + bytes_left

C. buf + bytes_left-n
D. buf +n - bytes_left |

We’re lost...

m

22

YA/ UNIVERSITY of WASHINGTON LO6: File 1/0 CSE333, Fall 2023

One method to read () n bytes

(int fd = open(filename, O RDONLY) ; h
char* buf = ...; // buffer of appropriate size
int bytes left = n;
int result;
while (bytes left > 0) {
esult = read(fd, buf + (n - bytes left), bytes left);
if (result == -1) /{
1f (errno != EINTR && errno != EAGAIN) {
// a real error happened, so return an error result
}
// EINTR or EAGAIN happened, so do nothing and try again
ontinue;
} else 1f (result == 0) {
// EOF reached, so stop readin _
break: g P g FrC\J(’r{‘\' indinite ‘D%o’n(: FOF reached
}
bytes 1lgft -= result;
}
\close(fd); Yy

readN.c 53

LO6: File 1/O CSE333, Fall 2023

YA/ UNIVERSITY of WASHINGTON

Other Low-Level Functions

+ Read man pages to learn about:
" write () —write data
« #include <unistd.h>
= fsync () —flush data to the underlying device
« #include <unistd.h>
& opendir (), readdir (), closedir () —deal with directory

listings
- Make sure you read the section 3 version (e.g., man 3 opendir)

e #include <dirent.h>

« A useful shortcut sheet (from CMU):
http://www.cs.cmu.edu/~guna/15-123511/Lectures/Lecture?4.pdf

24

http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

YA/ UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Fall 2023

C Standard Library vs. POSIX

+» Cstandard library implements a subset of POSIX
= e.g., POSIX provides directory manipulation that C std lib doesn’t

» Cstandard library implements automatic buffering
» Cstandard library has a nicer API

« The two are similar but C standard library builds on top of
POSIX

" Choice between high-level and low-level
= Will depend on the requirements of your application

= You will explore this relationship in Exercise 4!

25

YA/ UNIVERSITY of WASHINGTON LO6: File 1/0 CSE333, Fall 2023

Extra Exercise #1

+ Write a program that:
= Uses argc/argv to receive the name of a text file
= Reads the contents of the file a line at a time
" Parses each line, converting textintoa uint32 t
" Builds an array of the parsed uint32 t’s

m
Sorts the array bash$ cat in.txt

" Prints the sorted array to stdout 1213
3231
000005
. 1 . 52
+ Hint: use man to read about bashs . /extral in.txt
getline, sscanf, reallog, 5
52
and gsort 1213

3231
bash$

26

YA/ UNIVERSITY of WASHINGTON LO6: File 1/0 CSE333, Fall 2023

Extra Exercise #2

+ Write a program that:

= |Loops forever; in each loop:
- Prompt the userto [EIddly

_ , 00000010
input a filename 00000020

, 00000030

- Reads a filename 00000040
: 00000050

from stdin 00000060
00000070

- Opens and reads 00000080
the file 00000090
000000a0

« Prints its contents Foe Bte .
to stdout in the format shown:

" Useman toread about fgets

= Or, if you're more courageous, tryman 3 readline to learn about
libreadline.a and Google to learn how to link to it

27

