YA/ UNIVERSITY of WASHINGTON LO4: Structs, Modules

CSE333, Fall 2023

Structs, Modules
CSE 333 Fall 2023

Instructor: Chris Thachuk

Teaching Assistants:

Ann Baturytski Humza Lala
Yuquan Deng Alan Li

Noa Ferman Leanna Mi Nguyen
James Froelich Chanh Truong
Hannah Jiang Jennifer Xu

Yegor Kuznetsov

YA/ UNIVERSITY of WASHINGTON LO4: Structs, Modules CSE333, Fall 2023

Relevant Course Information (1/2)

«» EXxercises
= Exercise 1 solution out yesterday, grades released tonight

= Regrade requests: open 24 hr after, close 72 hr after release
= Exercise 2 due Thurs by 10pm (10/5)

+ Homework 1 out later today

" Not released yesterday, deadline will be extended to compensate
= Be sure to read headers carefully while implementing

= Use git add/commit/push regularly to save work — easier to share
with course staff and good practice when working with a partner
on future homework

YA/ UNIVERSITY of WASHINGTON LO4: Structs, Modules CSE333, Fall 2023

Relevant Course Information (2/2)

+ Section this week will involve group debugging!

= Be prepared for drawing memory diagrams and using your
terminal

YA UNIVERSITY of WASHINGTON LO4: Structs, Modules CSE333, Fall 2023

Lecture Outline

+ structs and typedef
<+ @Generic Data Structures in C

« Modules & Interfaces

YA/ UNIVERSITY of WASHINGTON LO4: Structs, Modules CSE333, Fall 2023

Structured Data (351 Review)

+ A struct isa Cdatatype that contains a set of fields

= Similar to a Java class, but with no methods or constructors

= Useful for defining new structured types of data

= Behave similarly to primitive variables

+ Generic declaration:

(struct tagname {\
typel namel;

typeN nameN;

\}’ Y,

&

(// the following defines a new

~N

// structured datatype called
// a "struct Point"
struct Point {

float x, y;

b g

// declare and initialize a
// struct Point variable
struct Point origin = {O.O,O.O};J

CSE333, Fall 2023

YA/ UNIVERSITY of WASHINGTON LO4: Structs, Modules

Using structs (351 Review)

« Use “.” to refer to a field in a struct

+» Use “—>" to refer to a field from a struct pointer

= Dereferences pointer first, then accesses field

(struct Point {
float x, y;

[

int main (int argc, char** argv) {
struct Point pl = {0.0, 0.0}; // pl is stack allocated

struct Point* pl ptr = &pl;

pl.x = 1.0;
pl ptr->y = 2.0; // equivalent to (*pl ptr).y = 2.0;

return EXIT SUCCESS;
) J

-
simplestruct.c

YA/ UNIVERSITY of WASHINGTON

LO4: Structs, Modules

Copy by Assignment

CSE333, Fall 2023

% You can assign the value of a struct from a struct of the

same type — this copies the entire contents!

(struct Point { R
float x, y;
i
int main(int argc, char** argv) {
struct Point pl = {0.0, 2.0};
struct Point p2 = {4.0, 6.0};
printf ("pl: {%f,%f} p2: {$f,%f}\n", pl.x, pl.y, P2.%X, P2.Y);
p2 = pl;
printf ("pl: {%f,%f} p2: {%$f,%f}\n", pl.x, pl.y, P2.%X, P2.Y);
return EXIT SUCCESS;
\} Wy,

structassign.c

YA/ UNIVERSITY of WASHINGTON LO4: Structs, Modules

CSE333, Fall 2023

Typedef (351 Review)

<« @Generic format:{typedef type name;]

+ Allows you to define new data type names/synonyms
"= Both type and name are usable and refer to the same type

= Be careful with pointers — * before name is part of t ype!

(// make "superlong" a synonym for "unsigned long long"
typedef unsigned long long superlong;

// make "str" a synonym for "char*"
typedef char *str;

// make "Point" a synonym for "struct point st { ... }"
// make "PointPtr'" a synonym for "struct point st*"
typedef struct point st {

superlong x;

superlong y;
} Point, *PointPtr; // similar syntax to "int n, *p;"

Point origin = {0, 0};

YA/ UNIVERSITY of WASHINGTON LO4: Structs, Modules CSE333, Fall 2023

Dynamically-allocated Structs

+ You canmalloc and £ree structs, just like other data
type

" sizeof is particularly helpful here

(// a complex number is a + bi
typedef struct complex st ({
double real; // real component
double imag; // 1maginary component
} Complex;

Complex* AllocComplex (double real, double imag) {
Complex* retval = (Complex*) malloc(sizeof (Complex));
if (retval != NULL) {

retval->real = real;
retval->imag = 1imag;
}

return retval;

k} J

complexstruct.c 10

YA/ UNIVERSITY of WASHINGTON LO4: Structs, Modules CSE333, Fall 2023

Structs as Arguments

+ Structs are passed by value, like everything else in C

" Entire struct is copied — where?

" To manipulate a struct argument, pass a pointer instead

(typedef struct point st { structarg,c\
int x, vy;
} Point;

void DoubleXBroken (Point p) { p.x *= 2; 1}
voilid DoubleXWorks (Point* p) { p->x *= 2; }

int main(int argc, char** argv) {
Point a = {1,1};
DoubleXBroken (a) ;
printf (" (%d, %d) \n", a.x, a.y): // prints: (,)
DoubleXWorks (&a) ;
printf (" (%d, %d) \n", a.x, a.y): // prints: (,)
return EXIT SUCCESS;

YA/ UNIVERSITY of WASHINGTON LO4: Structs, Modules CSE333, Fall 2023

Returning Structs

+ Exact method of return depends on calling conventions
= Oftenin $rax and $rdx for small structs

= Often returned in memory for larger structs

(// a complex number 1is a + bi R
typedef struct complex st ({
double real; // real component

double imag; // imaginary component
} Complex;

Complex MultiplyComplex (Complex x, Complex y) {
Complex retwval;

retval.real = (x.real * y.real) - (xXx.ilmag * y.imag);
retval.imag = (x.imag * y.real) - (X.real * y.imaqg);
return retval; // returns a copy of retval

\} J

complexstruct.c

12

YA/ UNIVERSITY of WASHINGTON LO4: Structs, Modules CSE333, Fall 2023

|]
Pass Copy of Struct or Pointer? S}r‘}(y;f

+ Value passed: passing a pointer is cheaper and takes less
space unless struct is small

» Field access: indirect accesses through pointers are a bit
more expensive and can be harder for compiler to
optimize

» For small stucts (like struct complex st), passinga
copy of the struct can be faster and often preferred if
function only reads data; for large structs use pointers

13

YA/ UNIVERSITY of WASHINGTON LO4: Structs, Modules CSE333, Fall 2023

Check-In Activity

+ Write out a C snippet that:

= Defines a struct for a linked list node that holds (1) a character
pointer and (2) a pointer to an instance of this struct

= Typedefs the struct as Node

+ Worite out the prototype for a function Pop that takes the
head of a linked list of Node, then removes and returns
the first node:

14

YA/ UNIVERSITY of WASHINGTON LO4: Structs, Modules CSE333, Fall 2023

Lecture Outline

+ structsand typedef
+ @Generic Data Structures in C

« Modules & Interfaces

15

YA/ UNIVERSITY of WASHINGTON LO4: Structs, Modules CSE333, Fall 2023

Simple Linked List in C

+» Each node in a linear, singly-linked list contains:

L)

= Some element as its payload

= A pointer to the next node in the linked list

« This pointer is NULL (or some other indicator) in the last node in the
list

Element Z Cgl:‘\y ElementY Cgl:v‘\ ElementX | (@

AN

head

o

16

YA/ UNIVERSITY of WASHINGTON

Linked List Node

LO4: Structs, Modules

CSE333, Fall 2023

+ Let’s represent a linked list node with a struct

" For now, assume each elementisan int

fkypedef struct node st {
int element;
struct node st* next;
} Node;

Node nl, n2;

nl.element = 1;
nl.next = &n2;
n2.element = 2;

n? .next = NULL;
return EXIT SUCCESS;

\}

int main(int argc, char** argv)

{

~

manual_list.c

element next

nl 1
n2 2 1)

17

YA/ UNIVERSITY of WASHINGTON LO4: Structs, Modules

Push Onto List

rtypedef struct node st {
int element;

struct node st* next;
} Node;

return n;

int main(int argc, char** argv)
Node* 1list = NULL;

meep]ist = Push(list, 1);
list = Push(list, 2);

return EXIT SUCCESS;

}
.

Node* Push (Node* head, int e) {

Node* n = (Node*) malloc (sizeof (Node)) ;
assert(n != NULL); // crashes if false
n->element = e;
n->next = head;

{

push_list.c

CSE333, Fall 2023

Arrow points to
next instruction.

(main) 1ist

18

YA/ UNIVERSITY of WASHINGTON LO4: Structs, Modules CSE333, Fall 2023

Arrow points to

Push Onto List next instruction.

rtypedef struct node st { b
int element; (main)list ®
struct node st* next;
} Node;
Node* Push (Node* head, int e) { (Push) head| @
mep Node* n = (Node*) malloc(sizeof (Node)) ;
assert(n != NULL); // crashes if false (Push) el 1
n->element = e;
n->next = head;
return n; (PUSh) =
}
int main(int argc, char** argv) {
Node* list = NULL; element next
list = Push(list, 1);
list = Push(list, 2);
return EXIT SUCCESS;
x} Y,

push_list.c

19

YA/ UNIVERSITY of WASHINGTON LO4: Structs, Modules CSE333, Fall 2023

Arrow points to

Push Onto List next instruction.

rtypedef struct node st { b
int element; (main)list ®
struct node st* next;
} Node;
Node* Push (Node* head, int e) { (Push) head| @
Node* n = (Node*) malloc (sizeof (Node)) ;
==y assert(n != NULL); // crashes if false (Push) el 1
n->element = e;
n->next = head;
return n; (PUSh) =
}
int main(int argc, char** argv) {
Node* list = NULL; element next
list = Push(list, 1);
list = Push(list, 2);
return EXIT SUCCESS;
\} Y,

push_list.c

20

YA/ UNIVERSITY of WASHINGTON LO4: Structs, Modules CSE333, Fall 2023

Arrow points to

Push Onto List next instruction.

rtypedef struct node st { b
int element; (main)list ®
struct node st* next;
} Node;
Node* Push (Node* head, int e) { (Push) head| @
Node* n = (Node*) malloc (sizeof (Node)) ;
assert(n != NULL); // crashes if false (Push) el 1
m—fp n->element = e;
n->next = head;
return n; (PUSh) =
}
int main(int argc, char** argv) {
Node* list = NULL; element next
list = Push(list, 1);
list = Push(list, 2);
return EXIT SUCCESS;
x} J

push_list.c

21

YA/ UNIVERSITY of WASHINGTON LO4: Structs, Modules CSE333, Fall 2023

Arrow points to

Push Onto List next instruction.

rtypedef struct node st { b
int element; (main)list ®
struct node st* next;
} Node;
Node* Push (Node* head, int e) { (Push) head| @
Node* n = (Node*) malloc (sizeof (Node)) ;
assert(n != NULL); // crashes if false (Push) el 1
n->element = e;
==y n->next = head;
return n; (PUSh) =
}
int main(int argc, char** argv) {
Node* list = NULL; element next
list = Push(list, 1); 1
list = Push(list, 2);
return EXIT SUCCESS;
x} J

push_list.c

22

YA/ UNIVERSITY of WASHINGTON LO4: Structs, Modules CSE333, Fall 2023

Arrow points to

Push Onto List next instruction.

rtypedef struct node st { b
int element; (main)list ®
struct node st* next;
} Node;
Node* Push (Node* head, int e) { (Push) head| @
Node* n = (Node*) malloc(sizeof (Node)) ;
assert(n != NULL); // crashes if false (Push) el 1
n->element = e;
n->next = head;
mea return n; (Push) &
}
int main(int argc, char** argv) {
Node* list = NULL; element next
list = Push(list, 1); 1 @
list = Push(list, 2);
return EXIT SUCCESS;
x} J

push_list.c

23

YA/ UNIVERSITY of WASHINGTON LO4: Structs, Modules CSE333, Fall 2023

Arrow points to

Push Onto List next instruction.

rtypedef struct node st { b
int element; Unmn)list
struct node st* next;
} Node;
Node* Push (Node* head, int e) { (Push) head
Node* n = (Node*) malloc (sizeof (Node)) ;
assert(n != NULL); // crashes if false (Push) el 1
n->element = e;
n->next = head;
mea return n; (Push) &
}
int main(int argc, char** argv) {
Node* list = NULL; element next
list = Push(list, 1); 1 @
mmap list = Push(list, 2);
return EXIT SUCCESS;
x} Y,

push_list.c

24

YA/ UNIVERSITY of WASHINGTON LO4: Structs, Modules

Push Onto List

rtypedef struct node st {
int element;
struct node st* next;
} Node;

mep Node* n = (Node*) malloc(sizeof (Node)) ;
assert(n != NULL); // crashes if false
n->element = e;
n->next = head;

return n;

int main(int argc, char** argv)
Node* 1list = NULL;
list = Push(list, 1);
list = Push(list, 2);
return EXIT SUCCESS;

}
.

Node* Push (Node* head, int e) {

{

push_list.c

CSE333, Fall 2023

Arrow points to
next instruction.

(main) 1ist

(Push) head

(Push) e

(Push)

element next
1 1)
element next

25

YA/ UNIVERSITY of WASHINGTON LO4: Structs, Modules CSE333, Fall 2023

Arrow points to

Push Onto List next instruction.

rtypedef struct node st { b
int element; Unmn)list
struct node st* next;
} Node;
Node* Push (Node* head, int e) { (Push) head
Node* n = (Node*) malloc (sizeof (Node)) ;
==y assert(n != NULL); // crashes if false (Push) el 2
n->element = e;
n->next = head;
return n; (PUSh)
}
int main(int argc, char** argv) {
Node* list = NULL; element next
list = Push(list, 1); 1 @
list = Push(list, 2);
return EXIT SUCCESS; element next
\} J

push_list.c

26

YA/ UNIVERSITY of WASHINGTON LO4: Structs, Modules CSE333, Fall 2023

Arrow points to

Push Onto List next instruction.

rtypedef struct node st { b
int element; (main) 1ist
struct node st* next;
} Node;
Node* Push (Node* head, int e) { (Push) head
Node* n = (Node*) malloc (sizeof (Node)) ;
assert(n != NULL); // crashes if false (Push) el 2
m—fp n->element = e;
n->next = head;
return n; (PUSh)
}
int main(int argc, char** argv) {
Node* list = NULL; element next
list = Push(list, 1); 1 @
list = Push(list, 2);
return EXIT SUCCESS; element next
x} J

push_list.c

27

YA/ UNIVERSITY of WASHINGTON LO4: Structs, Modules CSE333, Fall 2023

Arrow points to

Push Onto List next instruction.

rtypedef struct node st { b
int element; (main) 1ist
struct node st* next;
} Node;
Node* Push (Node* head, int e) { (Push) head
Node* n = (Node*) malloc (sizeof (Node)) ;
assert(n != NULL); // crashes if false (Push) el 2
n->element = e;
==y n->next = head;
return n; (PUSh)
}
int main(int argc, char** argv) {
Node* list = NULL; element next
list = Push(list, 1); 1 @
list = Push(list, 2);
return EXIT SUCCESS; element next
x} y, 2

push_list.c

28

YA/ UNIVERSITY of WASHINGTON LO4: Structs, Modules CSE333, Fall 2023

Arrow points to

Push Onto List next instruction.

rtypedef struct node st { b
int element; Unmn)list
struct node st* next;
} Node;
Node* Push (Node* head, int e) { (Push) head
Node* n = (Node*) malloc (sizeof (Node)) ;
assert(n != NULL); // crashes if false (Push) el 2
n->element = e;
n->next = head;
mea return n; (Push)
}
int main(int argc, char** argv) {
Node* list = NULL; element next
list = Push(list, 1); 1 @
list = Push(list, 2);
return EXIT SUCCESS; element next
x} J 2

push_list.c

29

YA/ UNIVERSITY of WASHINGTON LO4: Structs, Modules CSE333, Fall 2023

Arrow points to

Push Onto List next instruction.

rtypedef struct node st { b
int element; Unmn)list
struct node st* next;
} Node;
Node* Push (Node* head, int e) { (Push) head
Node* n = (Node*) malloc (sizeof (Node)) ;
assert(n != NULL); // crashes if false (Push) el 2
n->element = e;
n->next = head;
mea return n; (Push)
}
int main(int argc, char** argv) {
Node* list = NULL; element next
list = Push(list, 1); 1 @
list = Push(list, 2);
==y return EXIT SUCCESS; element next
x} J 2

push_list.c

30

YA/ UNIVERSITY of WASHINGTON LO4: Structs, Modules CSE333, Fall 2023

Arrow points to

Push Onto List next instruction.

rtypedef struct node st { b
int element;
struct node st* next;
} Node;
Node* Push (Node* head, int e) {
Node* n = (Node*) malloc (sizeof (Node)) ;
assert(n != NULL); // crashes if false
n->element = e;
n->next = head;
return n;
}
int main(int argc, char** argv) {
Node* list = NULL; element next
list = Push(list, 1); 1 @
list = Push(list, 2);
return EXIT SUCCESS; element next
--’t} J 2

push_list.c

31

YA/ UNIVERSITY of WASHINGTON LO4: Structs, Modules CSE333, Fall 2023

A Generic Linked List

+ Let’s generalize the linked list element type
= Let customer decide type (instead of always int)

" |dea: let them use a generic pointer (i.e., a void*)

rtypedef struct node st {
void* element;

f

struct node st* next; element
} Node;

next

Node* Push (Node* head, wvoid* e) {

Node* n = (Node*) malloc (sizeof (Node)) ;
I — . ;
assert(n != NULL); // crashes if false elementQ
n->element = e;
n->next = head; next @

return n;

32

YA/ UNIVERSITY of WASHINGTON LO4: Structs, Modules CSE333, Fall 2023

Using a Generic Linked List

+ Type casting needed to deal with void* (raw address)
= Before pushing, need to convert to void*

= Convert back to data type when accessing

rtypedef struct node st {
volid* element;
struct node st* next;
} Node;

Node* Push (Node* head, void* e); // assume last slide’s code

int main(int argc, char** argv) {
char* hello = "Hi there!";
char* goodbye = "Bye bye.";
Node* 1list = NULL;

list = Push(list, (void¥*) hello);

list = Push(list, (wvoid¥*) goodbye) ;

printf ("payload: '%$s'\n", (char*) ((list->next)->element));
return EXIT SUCCESS;

} manual_list_void.cJ

33

YA/ UNIVERSITY of WASHINGTON LO4: Structs, Modules CSE333, Fall 2023

Resulting Memory Diagram

(main) list (main) goodbye Q (main) hello

element| C I A By | e b|ly]| e \O
element| C I S H | 1 tlhlelr]|e I 1\O

next| @

What would happen if we execute * (1ist->next) = *1ist?

34

YA/ UNIVERSITY of WASHINGTON LO4: Structs, Modules

Something’s Fishy... &

A (benign) memory leak!

int main(int argc, char** argv) {
char* hello = "Hi there!";
char* goodbye = "Bye bye.";
Node* 1list = ;

list = Push(list, (void*) hello);

return ;

— }

list = Push(list, (void*) goodbye);

Try running with Valgrind:

$ gcc -Wall -g —o manual list void manual list void.c

$ valgrind --leak- check=full /manual llst void

CSE333, Fall 2023

35

YA/ UNIVERSITY of WASHINGTON LO4: Structs, Modules

Lecture Outline

+ structsand typedef
<+ @Generic Data Structures in C

+ Modules & Interfaces

CSE333, Fall 2023

36

W UNIVERSITY of WASHINGTON LO4: Structs, Modules CSE333, Fall 2023

Multi-File C Programs

« Let’s create a linked list module

= A module is a self-contained piece of an overall program
- Has externally visible functions that customers can invoke

- Has externally visible t ypedefs, and perhaps global variables, that
customers can use

- May have internal functions, t ypede£s, or global variables that
customers should not look at

= Can be developed independently and re-used in different projects

+ The module’s interface is its set i e
of public functions, t ypedefs,
and global variables

37

YA/ UNIVERSITY of WASHINGTON LO4: Structs, Modules CSE333, Fall 2023

C Header Files

+» Header: a file whose only purposeisto be #include’d
= Generally has a filename . h extension

= Holds the variables, types, and function prototype declarations
that make up the interface to a module

" There are <system-defined> and "programmer-defined" headers

« Main ldea:
" Every name.cisintended to be a module that has a name .h
" name.h declares the interface to that module

" Other modules can use name by #include-ing name.h

- They should assume as little as possible about the implementation in
name.c

38

YA/ UNIVERSITY of WASHINGTON LO4: Structs, Modules CSE333, Fall 2023

C Module Conventions (1 of 2) £y
Y

+ File contents:
= _h files only contain declarations, never definitions

= _ c files never contain prototype declarations for functions that
are intended to be exported through the module interface

" Public-facing functions are ModuleName FunctionName ()
and take a pointer to “this” as their first argument
% Including:
" NEVER #includea .cfile—only #include .h files
" #include all of headers you reference, even if another header
(transitively) includes some of them
+» Compiling:

= Any . c file with an associated . h file should be able to be
compiled (together via # include)intoa .o file

39

YA/ UNIVERSITY of WASHINGTON LO4: Structs, Modules CSE333, Fall 2023

C Module Conventions (2 of 2) T

«» Commenting:

= |f a function is declared in a header file (. h) and defined in a C file
(. c), the header needs full documentation because it is the public
specification

- Don’t copy-paste the comment into the C file (don’t want two copies
that can get out of sync)

= |f prototype and implementation are in the same C file:

—> + School of thought #1: Full comment on the prototype at the top of
the file, no comment (or “declared above”) on code

 School of thought #2: Prototype is for the compiler and doesn’t need
comment; comment the code to keep them together

e.g., 333
project code

40

YA/ UNIVERSITY of WASHINGTON LO4: Structs, Modules CSE333, Fall 2023

Extra Exercise #1

+ Write a program that defines:
= A new structured type Point
- Represent it with £1oats for the x and y coordinates

= A new structured type Rectangle
- Assume its sides are parallel to the x-axis and y-axis

- Represent it with the bottom-left and top-right Points
= A function that computes and returns the area of a Rectangle

= A function that tests whether a Point is inside of a Rectangle

41

YA/ UNIVERSITY of WASHINGTON LO4: Structs, Modules

Extra Exercise #2

+» Implement AllocSet () and FreeSet ()

= AllocSet() needs to use malloc twice: once to allocate a new
ComplexSet and once to allocate the “points” field inside it

" FreeSet() needs to use free twice

(typedef struct complex st { h
double real; // real component
double imag; // 1imaginary component
} Complex;

typedef struct complex set st ({
double num points in set;

Complex* points; // an array of Complex
} ComplexSet;

ComplexSet* AllocSet (Complex c arr[], int size);

\void FreeSet (ComplexSet* set); y

CSE333, Fall 2023

42

YA/ UNIVERSITY of WASHINGTON LO4: Structs, Modules

Extra Exercise #3

+ Implement and test a binary search tree
" https://en.wikipedia.org/wiki/Binary search tree

- Don’t worry about making it balanced

" Implement key insert() and lookup() functions
- Bonus: implement a key delete() function

" Implement it as a C module
« bst.c,bst.h

" Implement test bst.c

-« Contains main() and tests out your BST

CSE333, Fall 2023

43

https://en.wikipedia.org/wiki/Binary_search_tree

YA/ UNIVERSITY of WASHINGTON LO4: Structs, Modules

Extra Exercise #4

+ Implement a Complex number module
" complex.c,complex.h
" |ncludes a typedef to define a complex number
- a+ bi, whereaandbare doubles
= |ncludes functions to:
- add, subtract, multiply, and divide complex numbers

" Implement a test driver in test complex.c

« Containsmain ()

CSE333, Fall 2023

44

