
333 Section 7 - C++ Casting and Inheritance

C++ Smart Pointers
std::shared_ptr – Uses reference counting to determine when to delete a managed raw pointer

● Most commonly used type of smart pointer in practice
● std::weak_ptr – Used in conjunction with shared_ptr but does not contribute to

reference count
std::unique_ptr – Uniquely manages a raw pointer

● Used when you want to declare unique ownership of a pointer
● Disabled cctor and op=

Exercise 1 - “Smart” LinkedList
Consider the IntNode struct below. Convert the IntNode struct to be “smart” by using
shared_ptr.

#include <memory>
using std::shared_ptr;

struct IntNode {
IntNode(int* val, IntNode* node): value(val), next(node) {}

~IntNode() { delete value; }

int* value;
IntNode* next;

};

After the conversion, draw a memory diagram with the reference count for blocks of memory.

#include <iostream>

using std::cout;
using std::endl;

int main() {
shared_ptr<IntNode> head =

shared_ptr<IntNode>(new IntNode(new int(351), nullptr));
head->next = shared_ptr<IntNode>(new IntNode(new int(333),

nullptr));
shared_ptr<IntNode> iter = head;
while (iter != nullptr) {
cout << *(iter->value) << endl;
iter = iter->next;

}
}

1



Casting in C++
While in C++, we want to use casts that are more explicit in their behavior. This gives us a better
understanding of what happens when we read our code, because C-style casts can do many
(sometimes unwanted) things. There are four types of casts we will use in C++:

● static_cast<type_to>(expression);
Casting between related types

● dynamic_cast<type_to>(expression);
Casting pointers of similar types (only used with inheritance)

● const_cast<type_to>(expression);
Adding or removing const-ness of a type

● reinterpret_cast<type_to>(expression);
Casting between incompatible types of the same size (doesn’t do float conversion)

Exercise 2
For each of the following snippets of code, fill in the blank with the most appropriate C++ style
cast. Assume that we have the following classes defined:

class Base {
public:
int x;

};

class Derived : public Base {
public:
int y;

};

int64_t x = 0x7ffffffffe870;
char* str = _____________________________(x);

void foo (Base* b) {
Derived* d = ___________________________(b);
// additional omitted code

}

Derived* d = new Derived;
Base* b = _______________________________(d);

double x = 64.382;
int64_t y = ______________________________(x);

2



Inheritance in C++

Inheritance
A Derived class inherits from a base class (Similar to: A subclass inherits from a superclass)

● A derived class Inherits all non-private member variables and functions (except for ctor,
cctor, dtor, op=)

● Aside: We will be only using public inheritance in CSE 333

Inheritance in HW3

Base Class: HashTableReader (Protected) Derived Classes

● list<IndexFileOffset_t>
LookupElementPositions(
HTKey_t hash_val) const;

● FILE* file_;

● IndexFileOffset_t offset_;

● BucketListHader header_;

● IndexTableReader – Reads index table

● DocIDTableReader – Reads DocID Table

● DocTableReader – Reads DocTable

● FileIndexReader – Reads File’s Index

Abstract Class Examples

Fruit Abstract Class Banana Derived Class

#include <string>
using std::string;

class Fruit {
public:
Fruit() = default;
virtual ~Fruit() {}
// A fun fact
virtual string FunFact() = 0;

};

#include <string>
using std::string;

class Banana : public Fruit {
public:
Banana() = default;
virtual ~Banana() = default;
string FunFact() override {
return “It’s a berry”;

}
};

Style Considerations
● Use virtual only once when first defined in the base class
● All derived classes of a base class should use override to check at compile time that

a function uses dynamic dispatch
● Call dtors of a base class as virtual – Guarantees all derived classes will use

dynamic dispatch for their destructors

3



Exercise 3
Exercise 3A – Create an Animal Abstract class. It should have a protected member legs
variable and a public num_legs member function. Try to use good style!

Exercise 3B
Now that you have made an abstract Animal class, try to make an implementation with a
derived class of Animal.

This is an open-ended question, so you are free to be imaginative with your implementation of
the abstract Animal Class!

4


