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About how long did Exercise 7 take you?

A. [0, 2) hours
B. [2, 4) hours
C. [4, 6) hours
D. [6, 8) hours
E. 8+ Hours
F. I didn’t submit / I prefer not to say
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Relevant Course Information

❖ Midterm starts Wednesday (2/9) and runs until end of 
Saturday (2/12)

▪ Topics:  everything from lecture, exercises, project, etc. up 
through hw2 and ex7

▪ Written answers – short-answer questions and text file uploads

▪ Gradescope quiz – can open, close, & submit as much as you want

▪ Some discussion allowed if following the Gilligan’s Island Rule

❖ Exercise 8 released today and due Wednesday (2/16) at 
11am PDT

▪ Practice using C++ STL containers
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Lecture Outline

❖ Introducing STL Smart Pointers
▪ ToyPtr refresher

▪ Reference Counting, shared_ptr (and weak_ptr)

▪ unique_ptr

❖ Possible Errors with Smart Pointers
▪ weak_ptr and Reference Counting Cycles

▪ Smart Pointer gotcha’s

▪ Handling multiple Smart Pointers
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Motivations for Smart Pointers

❖ Automatically manage allocated memory
▪ I don’t have to call delete or delete[] on memory

▪ Memory will deallocate when I’m not using it anymore

▪ Decrease programming overhead of managing memory

❖ Work similarly to using a normal pointer

▪ I can access a pointer using -> and *

▪ I can also change the value that I am dereferencing

5
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Refresher: ToyPtr Class Template
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ToyPtr.h

#ifndef TOYPTR_H_

#define TOYPTR_H_

template <typename T>

class ToyPtr {

public:

ToyPtr(T* ptr) : ptr_(ptr) { }    // constructor

~ToyPtr() { delete ptr_; }        // destructor

T& operator*() { return *ptr_; }  // * operator

T* operator->() { return ptr_; }  // -> operator

private:

T* ptr_;                         // the pointer itself

};

#endif  // TOYPTR_H_
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ToyPtr Class Issue
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Toy_UseToyPtr.cc
#include “ToyPtr.h”

// We want two pointers!

int main(int argc, char** argv) {

ToyPtr<int> x(new int(5));

ToyPtr<int> y(x);

return EXIT_SUCCESS;

}

x

y

5 !! Double 
Delete!!

Any thoughts on designing around this?

🤔💭
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Smart Pointers Solutions

❖ Solution 1: Reference Counting
▪ shared_ptr (and weak_ptr)

▪ Counting the number of references (i.e. pointers that hold the 
address, not C++ references) to an object

▪ Only deallocating the pointer when no other smart pointers are 
managing the pointer

❖ Solution 2: Single Ownership of Memory
▪ unique_ptr

▪ A single smart pointer will have sole ownership over a pointer of 
heap memory

8
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Solution 1: Reference Counting (shared_ptr)

❖ shared_ptr is similar to our ToyPtr but implements 
reference counting

▪ https://en.cppreference.com/w/cpp/memory/shared_ptr

▪ It counts the number of references to an object

▪ Managed abstractly through sharing a resource counter

• ctors will create the counter

• Assignment/cctors increment the counter

• dtors decrement the counter and free

❖ Memory is freed when the reference count is 0
▪ All shared_ptrs have fallen out of scope

▪ Assumes that the memory being stored is allocated on the heap
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https://en.cppreference.com/w/cpp/memory/shared_ptr
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Now using shared_ptr
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Shared_Usage.cc
#include <memory>    // for std::shared_ptr

// We want two pointers!

int main(int argc, char** argv) {

std::shared_ptr<int> x(new int(5));

*x += 3;

std::shared_ptr<int> y = x;

return EXIT_SUCCESS;

}

x

y

5 No error! 🎉🎉8
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shared_ptrs and STL Containers

❖ Use shared_ptrs inside STL Containers

▪ Avoid extra object copies

▪ Safe to do, since copy/assign maintain a shared reference count
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vector<std::shared_ptr<int> > vec;

vec.push_back(std::shared_ptr<int>(new int(9)));

vec.push_back(std::shared_ptr<int>(new int(5)));

vec.push_back(std::shared_ptr<int>(new int(7)));

int& z = *vec[1];

std::cout << "z is: " << z << std::endl;

std::shared_ptr<int> copied(vec[1]);  // works!

std::cout << "*copied: " << *copied << std::endl;

vec.pop_back(); // removes with deallocating 7!

Shared_Vector.cc
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Practice with Reference Counts
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... (assume necessary includes)

int main(int argc, char** argv) {

std::shared_ptr<int> x(new int(10));

std::cout << x.use_count() << std::endl;

// temporary inner scope (!)

{  

std::shared_ptr<int> y(x);

std::cout << y.use_count() << std::endl;

}

std::cout << x.use_count() << std::endl;

std::cout << x.unique() << std::endl;

return EXIT_SUCCESS;

}

ReferenceCount_Share.cc

x 10

y

❖ What is the expected output of this program?

❖ When does all memory get deallocated?

Output:
1

2

1

true
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Solution 2: Unique Ownership (unique_ptr)

❖ A unique_ptr is the sole owner of a pointer to memory

▪ https://en.cppreference.com/w/cpp/memory/unique_ptr

▪ Similar operators to shared_ptr without reference counting

▪ When the unique_ptr falls out of scope, it will call delete on 
the managed pointer

❖ Enforces uniqueness by disabling copy and assignment
▪ Creates a compiler error if a unique_ptr is copied/assigned

❖ As an owner, a unique_ptr can choose to transfer and 
release ownership of a pointer

13

https://en.cppreference.com/w/cpp/memory/unique_ptr
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unique_ptrs Cannot Be Copied

❖ std::unique_ptr has disabled its copy constructor 
and assignment operator
▪ You cannot copy a unique_ptr, helping maintain “uniqueness” 

or “ownership”
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#include <memory>   // for std::unique_ptr

#include <cstdlib>  // for EXIT_SUCCESS

int main(int argc, char** argv) {

std::unique_ptr<int> x(new int(5));  // 

std::unique_ptr<int> y(x);           //

std::unique_ptr<int> z;              //

z = x;                               //

return EXIT_SUCCESS;

}

Unique_Fail.cc

ctor that takes a pointer           ✓

cctor, disabled. compiler error 

default ctor, holds nullptr ✓

op=, disabled. compiler error 
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unique_ptrs and STL

❖ unique_ptrs can also be stored in STL containers

❖ Contradiction! STL containers make copies of stored 
objects and unique_ptrs cannot be copied

❖ But each element in a container is generally only going to 
have a sole pointer

▪ Shouldn’t there be a way to do this to not have to keep track of 
reference count too?

15
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Releasing and Transferring Ownership
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int main(int argc, char** argv) {

unique_ptr<int> x(new int(5));

cout << "x: " << *x << endl;

return EXIT_SUCCESS;

}

Unique_Ownership.cc

// Releases ownership and returns a pointer

unique_ptr<int> y(x.release());  // x gives ownership to y

cout << ”y: " << *y << endl;

unique_ptr<int> z(new int(10));

// y gives ownership to z

// z’s reset() deallocates “10” and stores y’s pointer

z.reset(y.release());

❖ As an “owner” to a pointer, unique_ptrs should be 
able to remove its ownership
▪ release and reset free ownership of a unique_ptr
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unique_ptr and STL Example
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int main(int argc, char** argv) {

std::vector<std::unique_ptr<int> > vec;

vec.push_back(std::unique_ptr<int>(new int(9)));

vec.push_back(std::unique_ptr<int>(new int(5)));

vec.push_back(std::unique_ptr<int>(new int(7)));

// 

int z = *vec[1];

std::cout << "z is: " << z << std::endl;

//

std::unique_ptr<int> copied(vec[1]);

return EXIT_SUCCESS;

}

Unique_Vector.cc

z holds 5

compiler error!

vec

9 5 7

❖ STL’s supports transfer ownership of unique_ptrs
using move semantics
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unique_ptr and Move Semantics

❖ “Move semantics” (as compared to “Copy semantics”) 
move values from one object to another without copying

▪ https://en.cppreference.com/w/cpp/language/move_constructor

▪ Useful for optimizing away temporary copies

▪ STL’s use move semantics to change ownership of unique_ptrs
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... (includes and other examples)

int main(int argc, char** argv) {

std::unique_ptr<string> a(new string(”Hello"));

// moves a to b

std::unique_ptr<string> b = std::move(a);

std::cout << "a: " <<  a << std::endl; // default ctor value

std::cout << "b: " << *b << std::endl; // “Hello”

return EXIT_SUCCESS;

}

Semantics_Move.cc

https://en.cppreference.com/w/cpp/language/move_constructor
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Choosing Between Smart Pointers

❖ shared_ptrs allow multiple pointers manage the same 
memory

▪ Reference counting allows to deallocate when every smart 
pointer has stopped using it

▪ Used a lot more (more purposes with shared owners)

❖ unique_ptrs help showing ownership of memory

▪ The owner is responsible for calling free/delete when it’s 
time to delete the resource

• Recall in HW1 & HW2, we specifically documented who takes 
ownership of a resource

▪ Less overhead. There’s no additional resource needed for 
reference counting (since there is none)

20
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Lecture Outline

❖ Introducing STL Smart Pointers
▪ ToyPtr refresher

▪ Reference Counting, shared_ptr (and weak_ptr)

▪ unique_ptr

❖ Possible Errors with Smart Pointers
▪ weak_ptr and Reference Counting Cycles

▪ Smart Pointer gotcha’s

▪ Handling multiple Smart Pointers

21
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Reference Counting: Cycle of shared_ptrs

❖ What happens when main returns?

22

#include <cstdlib>

#include <memory>

using std::shared_ptr;

struct A {

shared_ptr<A> next;

shared_ptr<A> prev;

};

int main(int argc, char** argv) {

shared_ptr<A> head(new A());

head->next = shared_ptr<A>(new A());

head->next->prev = head;

return EXIT_SUCCESS;

}

Cycle_Shared.cc

next

prev

next

prev

head

∅

∅

12
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Solution: weak_ptrs

❖ weak_ptr is similar to a shared_ptr but doesn’t 
affect the reference count

▪ https://en.cppreference.com/w/cpp/memory/weak_ptr

▪ Not really a pointer as it cannot be dereferenced

▪ But you can use the lock function to “promote” it to an 
associated shared_ptr

❖ But it can be used to break our cycle problem!

23

https://en.cppreference.com/w/cpp/memory/weak_ptr
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Breaking the Cycle with weak_ptr

❖ Now what happens when main returns?

24

#include <cstdlib>

#include <memory>

using std::shared_ptr;

using std::weak_ptr;

struct A {

shared_ptr<A> next;

weak_ptr<A> prev;

};

int main(int argc, char** argv) {

shared_ptr<A> head(new A());

head->next = shared_ptr<A>(new A());

head->next->prev = head;

return EXIT_SUCCESS;

}

Cycle_Weak.cc

next

prev

next

prev

head

∅

∅

11
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Reference Counting: Dangling weak_ptr
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... (includes and other examples)

int main(int argc, char** argv) {

std::weak_ptr<int> w;

{  // temporary inner scope

std::shared_ptr<int> y(new int(10)); 

w = y; // assignment operator of weak_ptr takes a shared_ptr

std::shared_ptr<int> x = w.lock();  // "promoted" shared_ptr

std::cout << *x << " " << w.expired() << std::endl;

}

std::cout << w.expired() << std::endl;

w.lock();  // returns a nullptr

return EXIT_SUCCESS;

}

ReferenceCount_Weak.cc

❖ weak_ptrs don’t change reference count and can 
become “dangling”
▪ Object referenced may have been delete’d
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Lecture Outline

❖ Introducing STL Smart Pointers
▪ ToyPtr refresher

▪ Reference Counting, shared_ptr (and weak_ptr)

▪ unique_ptr

❖ Possible Errors with Smart Pointers
▪ weak_ptr and Reference Counting Cycles

▪ Smart Pointer gotcha’s

▪ Handling multiple Smart Pointers
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Limitations with Smart Pointers

❖ Although smart pointers help with managing memory, 
they follow some guidelines to enforce this

▪ Need to be careful with how you manage smart pointers

27
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Using a non-heap pointer

28

#include <cstdlib>

#include <memory>

using std::shared_ptr;

using std::weak_ptr;

int main(int argc, char** argv) {

int x = 333;

shared_ptr<int> p1(&x);

return EXIT_SUCCESS;

}

❖ Smart pointers can’t tell if the pointer 
you gave points to the heap!
▪ Will still call delete on the 

pointer when destructed.
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Re-using a raw pointer

29

#include <cstdlib>

#include <memory>

using std::unique_ptr;

int main(int argc, char** argv) {

int* x = new int(333);

unique_ptr<int> p1(x);

unique_ptr<int> p2(x);

return EXIT_SUCCESS;

}

❖ Smart pointers can’t 
tell if you are re-using 
a raw pointer.

p1 333

p2

!! Double 
Delete!!
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Re-using a raw pointer

30

#include <cstdlib>

#include <memory>

using std::shared_ptr;

int main(int argc, char** argv) {

int* x = new int(333);

shared_ptr<int> p1(x);  // ref count:

shared_ptr<int> p2(x);  // ref count:

return EXIT_SUCCESS;

}

❖ Smart pointers can’t 
tell if you are re-using 
a raw pointer.

p1 333

p2

!! Double 
Delete!!

Ref count = 1

Ref count = 1
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Re-using a raw pointer: Fixed Code
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#include <cstdlib>

#include <memory>

using std::shared_ptr;

int main(int argc, char** argv) {

int* x = new int(333);

shared_ptr<int> p1(new int(333));

shared_ptr<int> p2(p1); // ref count:

return EXIT_SUCCESS;

}

❖ Smart pointers can’t 
tell if you are re-using 
a raw pointer.
▪ Takeaway: be 

careful!!!!
▪ Safer to use cctor
▪ To be extra safe, 

don’t have a raw 
pointer variable!
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Caveat: Problems from get() 
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UseToyPtr.cc

#include <memory>

// Trying to get two pointers to the same thing

int main(int argc, char** argv) {

unique_ptr<int> x(new int(5));

unique_ptr<int> y(x.get());

return EXIT_SUCCESS;

}

x

y

5 !! Double 
Delete!!

❖ Smart pointers still have functions to return the raw 
pointer without losing its ownership
▪ get() can circumvent smart pointer usage

STYLE
TIP

STYLE
TIP
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Summary of Smart Pointers

❖ A shared_ptr utilizes reference counting for multiple 
owners of an object in memory
▪ deletes an object once its reference count reaches zero

❖ A weak_ptr works with a shared object but doesn’t 
affect the reference count

▪ Can’t actually be dereferenced, but can check if the object still 
exists and can get a shared_ptr from the weak_ptr if it does

❖ A unique_ptr takes ownership of a pointer

▪ Cannot be copied, but can be moved
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