
CSE333, Winter 2022L16: Smart Pointers

1

pollev.com/cse333dylan

About how long did Exercise 7 take you?

A. [0, 2) hours
B. [2, 4) hours
C. [4, 6) hours
D. [6, 8) hours
E. 8+ Hours
F. I didn’t submit / I prefer not to say

CSE333, Winter 2022L16: Smart Pointers

C++ Smart Pointers
CSE 333 Winter 2022

Guest Instructor: Dylan Hartono

Teaching Assistants:

Aakash Srazali Assaf Vayner Brenden Page

Cleo Chen Dan Constantinescu Dylan Hartono

Elizabeth Haker Jacob Christy Julia Wang

Kenzie Mihardja Kyrie Dowling Mengqi Chen

Mitchell Levy Timmy Yang

CSE333, Winter 2022L16: Smart Pointers

Relevant Course Information

❖ Midterm starts Wednesday (2/9) and runs until end of
Saturday (2/12)

▪ Topics: everything from lecture, exercises, project, etc. up
through hw2 and ex7

▪ Written answers – short-answer questions and text file uploads

▪ Gradescope quiz – can open, close, & submit as much as you want

▪ Some discussion allowed if following the Gilligan’s Island Rule

❖ Exercise 8 released today and due Wednesday (2/16) at
11am PDT

▪ Practice using C++ STL containers

3

CSE333, Winter 2022L16: Smart Pointers

Lecture Outline

❖ Introducing STL Smart Pointers
▪ ToyPtr refresher

▪ Reference Counting, shared_ptr (and weak_ptr)

▪ unique_ptr

❖ Possible Errors with Smart Pointers
▪ weak_ptr and Reference Counting Cycles

▪ Smart Pointer gotcha’s

▪ Handling multiple Smart Pointers

4

CSE333, Winter 2022L16: Smart Pointers

Motivations for Smart Pointers

❖ Automatically manage allocated memory
▪ I don’t have to call delete or delete[] on memory

▪ Memory will deallocate when I’m not using it anymore

▪ Decrease programming overhead of managing memory

❖ Work similarly to using a normal pointer

▪ I can access a pointer using -> and *

▪ I can also change the value that I am dereferencing

5

CSE333, Winter 2022L16: Smart Pointers

Refresher: ToyPtr Class Template

6

ToyPtr.h

#ifndef TOYPTR_H_

#define TOYPTR_H_

template <typename T>

class ToyPtr {

public:

ToyPtr(T* ptr) : ptr_(ptr) { } // constructor

~ToyPtr() { delete ptr_; } // destructor

T& operator*() { return *ptr_; } // * operator

T* operator->() { return ptr_; } // -> operator

private:

T* ptr_; // the pointer itself

};

#endif // TOYPTR_H_

CSE333, Winter 2022L16: Smart Pointers

ToyPtr Class Issue

7

Toy_UseToyPtr.cc
#include “ToyPtr.h”

// We want two pointers!

int main(int argc, char** argv) {

ToyPtr<int> x(new int(5));

ToyPtr<int> y(x);

return EXIT_SUCCESS;

}

x

y

5 !! Double
Delete!!

Any thoughts on designing around this?

🤔💭

CSE333, Winter 2022L16: Smart Pointers

Smart Pointers Solutions

❖ Solution 1: Reference Counting
▪ shared_ptr (and weak_ptr)

▪ Counting the number of references (i.e. pointers that hold the
address, not C++ references) to an object

▪ Only deallocating the pointer when no other smart pointers are
managing the pointer

❖ Solution 2: Single Ownership of Memory
▪ unique_ptr

▪ A single smart pointer will have sole ownership over a pointer of
heap memory

8

CSE333, Winter 2022L16: Smart Pointers

Solution 1: Reference Counting (shared_ptr)

❖ shared_ptr is similar to our ToyPtr but implements
reference counting

▪ https://en.cppreference.com/w/cpp/memory/shared_ptr

▪ It counts the number of references to an object

▪ Managed abstractly through sharing a resource counter

• ctors will create the counter

• Assignment/cctors increment the counter

• dtors decrement the counter and free

❖ Memory is freed when the reference count is 0
▪ All shared_ptrs have fallen out of scope

▪ Assumes that the memory being stored is allocated on the heap

9

https://en.cppreference.com/w/cpp/memory/shared_ptr

CSE333, Winter 2022L16: Smart Pointers

Now using shared_ptr

10

Shared_Usage.cc
#include <memory> // for std::shared_ptr

// We want two pointers!

int main(int argc, char** argv) {

std::shared_ptr<int> x(new int(5));

*x += 3;

std::shared_ptr<int> y = x;

return EXIT_SUCCESS;

}

x

y

5 No error! 🎉🎉8

CSE333, Winter 2022L16: Smart Pointers

shared_ptrs and STL Containers

❖ Use shared_ptrs inside STL Containers

▪ Avoid extra object copies

▪ Safe to do, since copy/assign maintain a shared reference count

11

vector<std::shared_ptr<int> > vec;

vec.push_back(std::shared_ptr<int>(new int(9)));

vec.push_back(std::shared_ptr<int>(new int(5)));

vec.push_back(std::shared_ptr<int>(new int(7)));

int& z = *vec[1];

std::cout << "z is: " << z << std::endl;

std::shared_ptr<int> copied(vec[1]); // works!

std::cout << "*copied: " << *copied << std::endl;

vec.pop_back(); // removes with deallocating 7!

Shared_Vector.cc

CSE333, Winter 2022L16: Smart Pointers

Practice with Reference Counts

12

... (assume necessary includes)

int main(int argc, char** argv) {

std::shared_ptr<int> x(new int(10));

std::cout << x.use_count() << std::endl;

// temporary inner scope (!)

{

std::shared_ptr<int> y(x);

std::cout << y.use_count() << std::endl;

}

std::cout << x.use_count() << std::endl;

std::cout << x.unique() << std::endl;

return EXIT_SUCCESS;

}

ReferenceCount_Share.cc

x 10

y

❖ What is the expected output of this program?

❖ When does all memory get deallocated?

Output:
1

2

1

true

CSE333, Winter 2022L16: Smart Pointers

Solution 2: Unique Ownership (unique_ptr)

❖ A unique_ptr is the sole owner of a pointer to memory

▪ https://en.cppreference.com/w/cpp/memory/unique_ptr

▪ Similar operators to shared_ptr without reference counting

▪ When the unique_ptr falls out of scope, it will call delete on
the managed pointer

❖ Enforces uniqueness by disabling copy and assignment
▪ Creates a compiler error if a unique_ptr is copied/assigned

❖ As an owner, a unique_ptr can choose to transfer and
release ownership of a pointer

13

https://en.cppreference.com/w/cpp/memory/unique_ptr

CSE333, Winter 2022L16: Smart Pointers

unique_ptrs Cannot Be Copied

❖ std::unique_ptr has disabled its copy constructor
and assignment operator
▪ You cannot copy a unique_ptr, helping maintain “uniqueness”

or “ownership”

14

#include <memory> // for std::unique_ptr

#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {

std::unique_ptr<int> x(new int(5)); //

std::unique_ptr<int> y(x); //

std::unique_ptr<int> z; //

z = x; //

return EXIT_SUCCESS;

}

Unique_Fail.cc

ctor that takes a pointer ✓

cctor, disabled. compiler error

default ctor, holds nullptr ✓

op=, disabled. compiler error

CSE333, Winter 2022L16: Smart Pointers

unique_ptrs and STL

❖ unique_ptrs can also be stored in STL containers

❖ Contradiction! STL containers make copies of stored
objects and unique_ptrs cannot be copied

❖ But each element in a container is generally only going to
have a sole pointer

▪ Shouldn’t there be a way to do this to not have to keep track of
reference count too?

15

CSE333, Winter 2022L16: Smart Pointers

Releasing and Transferring Ownership

16

int main(int argc, char** argv) {

unique_ptr<int> x(new int(5));

cout << "x: " << *x << endl;

return EXIT_SUCCESS;

}

Unique_Ownership.cc

// Releases ownership and returns a pointer

unique_ptr<int> y(x.release()); // x gives ownership to y

cout << ”y: " << *y << endl;

unique_ptr<int> z(new int(10));

// y gives ownership to z

// z’s reset() deallocates “10” and stores y’s pointer

z.reset(y.release());

❖ As an “owner” to a pointer, unique_ptrs should be
able to remove its ownership
▪ release and reset free ownership of a unique_ptr

CSE333, Winter 2022L16: Smart Pointers

unique_ptr and STL Example

17

int main(int argc, char** argv) {

std::vector<std::unique_ptr<int> > vec;

vec.push_back(std::unique_ptr<int>(new int(9)));

vec.push_back(std::unique_ptr<int>(new int(5)));

vec.push_back(std::unique_ptr<int>(new int(7)));

//

int z = *vec[1];

std::cout << "z is: " << z << std::endl;

//

std::unique_ptr<int> copied(vec[1]);

return EXIT_SUCCESS;

}

Unique_Vector.cc

z holds 5

compiler error!

vec

9 5 7

❖ STL’s supports transfer ownership of unique_ptrs
using move semantics

CSE333, Winter 2022L16: Smart Pointers

unique_ptr and Move Semantics

❖ “Move semantics” (as compared to “Copy semantics”)
move values from one object to another without copying

▪ https://en.cppreference.com/w/cpp/language/move_constructor

▪ Useful for optimizing away temporary copies

▪ STL’s use move semantics to change ownership of unique_ptrs

19

... (includes and other examples)

int main(int argc, char** argv) {

std::unique_ptr<string> a(new string(”Hello"));

// moves a to b

std::unique_ptr<string> b = std::move(a);

std::cout << "a: " << a << std::endl; // default ctor value

std::cout << "b: " << *b << std::endl; // “Hello”

return EXIT_SUCCESS;

}

Semantics_Move.cc

https://en.cppreference.com/w/cpp/language/move_constructor

CSE333, Winter 2022L16: Smart Pointers

Choosing Between Smart Pointers

❖ shared_ptrs allow multiple pointers manage the same
memory

▪ Reference counting allows to deallocate when every smart
pointer has stopped using it

▪ Used a lot more (more purposes with shared owners)

❖ unique_ptrs help showing ownership of memory

▪ The owner is responsible for calling free/delete when it’s
time to delete the resource

• Recall in HW1 & HW2, we specifically documented who takes
ownership of a resource

▪ Less overhead. There’s no additional resource needed for
reference counting (since there is none)

20

CSE333, Winter 2022L16: Smart Pointers

Lecture Outline

❖ Introducing STL Smart Pointers
▪ ToyPtr refresher

▪ Reference Counting, shared_ptr (and weak_ptr)

▪ unique_ptr

❖ Possible Errors with Smart Pointers
▪ weak_ptr and Reference Counting Cycles

▪ Smart Pointer gotcha’s

▪ Handling multiple Smart Pointers

21

CSE333, Winter 2022L16: Smart Pointers

Reference Counting: Cycle of shared_ptrs

❖ What happens when main returns?

22

#include <cstdlib>

#include <memory>

using std::shared_ptr;

struct A {

shared_ptr<A> next;

shared_ptr<A> prev;

};

int main(int argc, char** argv) {

shared_ptr<A> head(new A());

head->next = shared_ptr<A>(new A());

head->next->prev = head;

return EXIT_SUCCESS;

}

Cycle_Shared.cc

next

prev

next

prev

head

∅

∅

12

CSE333, Winter 2022L16: Smart Pointers

Solution: weak_ptrs

❖ weak_ptr is similar to a shared_ptr but doesn’t
affect the reference count

▪ https://en.cppreference.com/w/cpp/memory/weak_ptr

▪ Not really a pointer as it cannot be dereferenced

▪ But you can use the lock function to “promote” it to an
associated shared_ptr

❖ But it can be used to break our cycle problem!

23

https://en.cppreference.com/w/cpp/memory/weak_ptr

CSE333, Winter 2022L16: Smart Pointers

Breaking the Cycle with weak_ptr

❖ Now what happens when main returns?

24

#include <cstdlib>

#include <memory>

using std::shared_ptr;

using std::weak_ptr;

struct A {

shared_ptr<A> next;

weak_ptr<A> prev;

};

int main(int argc, char** argv) {

shared_ptr<A> head(new A());

head->next = shared_ptr<A>(new A());

head->next->prev = head;

return EXIT_SUCCESS;

}

Cycle_Weak.cc

next

prev

next

prev

head

∅

∅

11

CSE333, Winter 2022L16: Smart Pointers

Reference Counting: Dangling weak_ptr

25

... (includes and other examples)

int main(int argc, char** argv) {

std::weak_ptr<int> w;

{ // temporary inner scope

std::shared_ptr<int> y(new int(10));

w = y; // assignment operator of weak_ptr takes a shared_ptr

std::shared_ptr<int> x = w.lock(); // "promoted" shared_ptr

std::cout << *x << " " << w.expired() << std::endl;

}

std::cout << w.expired() << std::endl;

w.lock(); // returns a nullptr

return EXIT_SUCCESS;

}

ReferenceCount_Weak.cc

❖ weak_ptrs don’t change reference count and can
become “dangling”
▪ Object referenced may have been delete’d

CSE333, Winter 2022L16: Smart Pointers

Lecture Outline

❖ Introducing STL Smart Pointers
▪ ToyPtr refresher

▪ Reference Counting, shared_ptr (and weak_ptr)

▪ unique_ptr

❖ Possible Errors with Smart Pointers
▪ weak_ptr and Reference Counting Cycles

▪ Smart Pointer gotcha’s

▪ Handling multiple Smart Pointers

26

CSE333, Winter 2022L16: Smart Pointers

Limitations with Smart Pointers

❖ Although smart pointers help with managing memory,
they follow some guidelines to enforce this

▪ Need to be careful with how you manage smart pointers

27

CSE333, Winter 2022L16: Smart Pointers

Using a non-heap pointer

28

#include <cstdlib>

#include <memory>

using std::shared_ptr;

using std::weak_ptr;

int main(int argc, char** argv) {

int x = 333;

shared_ptr<int> p1(&x);

return EXIT_SUCCESS;

}

❖ Smart pointers can’t tell if the pointer
you gave points to the heap!
▪ Will still call delete on the

pointer when destructed.

CSE333, Winter 2022L16: Smart Pointers

Re-using a raw pointer

29

#include <cstdlib>

#include <memory>

using std::unique_ptr;

int main(int argc, char** argv) {

int* x = new int(333);

unique_ptr<int> p1(x);

unique_ptr<int> p2(x);

return EXIT_SUCCESS;

}

❖ Smart pointers can’t
tell if you are re-using
a raw pointer.

p1 333

p2

!! Double
Delete!!

CSE333, Winter 2022L16: Smart Pointers

Re-using a raw pointer

30

#include <cstdlib>

#include <memory>

using std::shared_ptr;

int main(int argc, char** argv) {

int* x = new int(333);

shared_ptr<int> p1(x); // ref count:

shared_ptr<int> p2(x); // ref count:

return EXIT_SUCCESS;

}

❖ Smart pointers can’t
tell if you are re-using
a raw pointer.

p1 333

p2

!! Double
Delete!!

Ref count = 1

Ref count = 1

CSE333, Winter 2022L16: Smart Pointers

Re-using a raw pointer: Fixed Code

31

#include <cstdlib>

#include <memory>

using std::shared_ptr;

int main(int argc, char** argv) {

int* x = new int(333);

shared_ptr<int> p1(new int(333));

shared_ptr<int> p2(p1); // ref count:

return EXIT_SUCCESS;

}

❖ Smart pointers can’t
tell if you are re-using
a raw pointer.
▪ Takeaway: be

careful!!!!
▪ Safer to use cctor
▪ To be extra safe,

don’t have a raw
pointer variable!

CSE333, Winter 2022L16: Smart Pointers

Caveat: Problems from get()

32

UseToyPtr.cc

#include <memory>

// Trying to get two pointers to the same thing

int main(int argc, char** argv) {

unique_ptr<int> x(new int(5));

unique_ptr<int> y(x.get());

return EXIT_SUCCESS;

}

x

y

5 !! Double
Delete!!

❖ Smart pointers still have functions to return the raw
pointer without losing its ownership
▪ get() can circumvent smart pointer usage

STYLE
TIP

STYLE
TIP

CSE333, Winter 2022L16: Smart Pointers

Summary of Smart Pointers

❖ A shared_ptr utilizes reference counting for multiple
owners of an object in memory
▪ deletes an object once its reference count reaches zero

❖ A weak_ptr works with a shared object but doesn’t
affect the reference count

▪ Can’t actually be dereferenced, but can check if the object still
exists and can get a shared_ptr from the weak_ptr if it does

❖ A unique_ptr takes ownership of a pointer

▪ Cannot be copied, but can be moved

33

