
CSE 333 Section 1

C, Pointers, and Gitlab

1



Logistics
● Exercise 1:

○ Due Friday @ 10:00am (4/1) – April Fools! Not the Exercise though…

● Exercise 2:
○ Due Monday @ 10:00am (4/4)

● Homework 0:
○ Due Monday @ 11:00pm (4/4)
○ Meant more for acquainting you to your repo

2



Icebreaker!

3



Pointer Review

4



Pointer Background

5

type* name;

int32_t* ptr;

0x7ff….ptr

ptr

● Primitive data type

● Meant to store an address of a 
value/type (like keeping track 
of a location in memory)

● Often denoted with an arrow 
in memory diagrams



510

Pointer Syntax and Semantics

6

int32_t x;
int32_t* ptr;

ptr

x

ptr = &x;
x = 5;
*ptr = 10;

● How to get a variable’s address 
(location in memory)?
○ Using the & operator
○ Getting the “address of”

● How to get the associated value of an 
address?
○ Using the * operator
○ Dereferencing memory



Exercise 1a

7



8

5

22

42

x

y

z

x_ptr (foo)

y_ptr (foo)

z_ptr (foo)

42

37

Draw a memory diagram like the one above for the following code 
and determine what the output will be.

void foo(int32_t* x_ptr, int32_t* y_ptr, int32_t* z_ptr) {
x_ptr = y_ptr;
*x_ptr = *z_ptr;
*z_ptr = 37;

}

int main(int argc, char* argv[]) {
int32_t x = 5, y = 22, z = 42;
foo(&x, &y, &z);
printf("%d, %d, %d\n", x, y, z);
return EXIT_SUCCESS;

}



Function Pointers

9



Function Pointers

● Pointers can store addresses of 
functions
○ Functions are just instructions in 

read-only memory, their names 
are pointers to this memory.

● Used when performing operations 
for a function to use
○ Like a comparator for a sorter to 

use in Java
○ Reduces redundancy

10

int one()   { return 1; }
int two()   { return 2; }
int three() { return 3; }

int get(int (*func_name)()) {
return func_name();

}

int main(int argc, char* argv[]) {
int res1 = get(one);
int res2 = get(two);
int res3 = get(three);
printf("%d, %d, %d\n", res1, res2, res3);
return EXIT_SUCCESS;

}



Output Parameters

11



Output Parameters

● Idea: Not necessarily returning values through the return statement (%rax register)
○ Rather it is changing a location in memory to be another value
○ Manipulating the stack

● Output Parameters is an C idiom in order to emulate “returning values” through 
parameters
○ Call the function with a parameter that takes in a pointer, or an “address of” a variable
○ This will give a location in memory to change inside of the called function
○ The function will dereference that location and  change it to give you a “returned” value

● This is particularly helpful for returning multiple values

12



Output Parameter Example

13

● Which of the following act as 
returning a value back to main?

● What gets printed?

void division(int32_t num, int32_t den,
int32_t* quotient,
int32_t* remainder) {

*quotient = num / den;
*remainder = num % den;

}

int main(int argc, char* argv[]) {
int32_t num = 22, den = 5, quot, rem;
division(num, den, &quot, &rem);
printf("%d, %d\n", quot, rem);
return EXIT_SUCCESS;

}

quotient and remainder

4, 2



C-Strings

14



C-Strings

● A string in C is declared as an array of characters that is terminated by a 
null character '\0’.

● When allocating space for a string, remember to add an extra element for 
the null character.

15

char str_name[size];



char str[6] = {'H','e','l','l','o','\0'};  // list initialization
char str[6] = "Hello";        // string literal initialization

Initialization Examples

16

index 0 1 2 3 4 5

value 'H' 'e' 'l' 'l' 'o' '\0'

- Both initialize the array in the declaration scope (e.g., on the Stack if a 
local var), though the latter can be thought of copying the contents from 
the string literal.
○ The size 6 is optional, as it can be inferred from the initialization.



char* str = "Hello";

String Literal Example

17

index 0 1 2 3 4 5

value ‘H’ ‘e’ ‘l’ ‘l’ ‘o’ \0

- By default, using a string literal will allocate and initialize the character 
array in read-only memory and the expression will return the address of 
the array, which can be stored in a pointer.

0x55..str



Exercise 1b

18



void bar(char* str) {
str = "ok bye!";

}

int main(int argc, char* argv[]) {
char* str = "hello world!";
bar(str);
printf("%s\n", str);  // should print "ok bye!"
return EXIT_SUCCESS;

}

char* str 

char* str

main stack frame

static data
["hello world!"]

["ok bye!"]

bar stack frame

19

Modifying the argument str in bar will not effect str in main
because arguments in C are always passed by value. 

In order to modify str in main, we need to pass a pointer to a 
pointer (char**) into bar and then dereference it:

void bar_fixed(char** str) {
*str = “ok bye!”;

}

The following code has a bug. What’s the problem, and how would you fix it?



void bar_fixed(char** str) {
*str = "ok bye!";

}

int main(int argc, char* argv[]) {
char* str = "hello world!";
bar(&str);
printf("%s\n", str);  // should print "ok bye!"
return EXIT_SUCCESS;

}

char* str 

char**
str

main stack frame

static data
["hello world!"]

["ok bye!"]

bar stack frame

20

Modifying the argument str in bar will not effect str in main
because arguments in C are always passed by value. 

In order to modify str in main, we need to pass a pointer to a 
pointer (char**) into bar and then dereference it:

void bar_fixed(char** str) {
*str = “ok bye!”;

}

The following code has a bug. What’s the problem, and how would you fix it?



Gitlab Demo

21



Git Reference

22

We have a page detailing the process of setting up git!

https://courses.cs.washington.edu/courses/cse333/22sp/resources/git_tutorial.html

https://courses.cs.washington.edu/courses/cse333/22sp/resources/git_tutorial.html


Git Repo Usage

23

Try to use the command line interface (not Gitlab’s web interface)

Only push files used to build your code to the repo
• No executables, object files, etc.
• Don’t always use <git add .> to add all your local files

Commit and push when an individual chunk of work is tested and done
• Don’t push after every edit
• Don’t only push once when everything is done


