
CSE333, Spring 2022L26: Concurrency and Threads

Concurrency: Threads
CSE 333 Spring 2022

Instructor: Hal Perkins

Teaching Assistants:
Esau Abraham Nour Ayad Ramya Challa
Cleo Chen Sanjana Chintalapati Dylan Hartono
Kenzie Mihardja Brenden Page Aakash bin Srazali
Justin Tysdal Julia Wang Timmy Yang

CSE333, Spring 2022L26: Concurrency and Threads

Administrivia (1)

v Last exercise ex17 out now, due Monday Wednesday
§ Concurrency using pthreads

v No class Monday – Memorial Day holiday
§ No office hours this Sunday night – will be Monday night instead

2

CSE333, Spring 2022L26: Concurrency and Threads

Administrivia (2)

v hw4 due Thursday night next week
§ <panic>If you haven’t started yet</panic>
§ Usual late days (max 2) available if you have any left
§ Mime types (in server query replies): hw4 server only needs to

have ones that match the files that it will actually send (including
pictures)

§ Remember – don’t modify Makefiles or header files
§ Please be careful about inappropriate copying of solution code

from others or found on the web. (Let’s not have problems this
late in the quarter)

3

CSE333, Spring 2022L26: Concurrency and Threads

Some Common hw4 Bugs

v Your server works, but is really, really slow
§ Check the 2nd argument to the QueryProcessor constructor

v Funny things happen after the first request
§ Make sure you’re not destroying the HTTPConnection object

too early (e.g. falling out of scope in a while loop)

v Server crashes on a blank request
§ Make sure that you handle the case that read() (or
WrappedRead()) returns 0

4

CSE333, Spring 2022L26: Concurrency and Threads

Previously…

v We implemented a search server but it was sequential
§ Processes requests one at a time regardless of client delays
§ Terrible performance, resource utilization

v Servers should be concurrent
§ Different ways to process multiple queries simultaneously:

• Issue multiple I/O requests simultaneously
• Overlap the I/O of one request with computation of another
• Utilize multiple CPUs or cores
• Mix and match as desired

5

CSE333, Spring 2022L26: Concurrency and Threads

Outline (next two lectures)

v We’ll look at different searchserver implementations
§ Sequential
§ Concurrent via dispatching threads – pthread_create()
§ Concurrent via forking processes – fork()
§

•

v Reference: Computer Systems: A Programmer’s
Perspective, Chapter 12 (CSE 351 book)

6

CSE333, Spring 2022L26: Concurrency and Threads

Sequential

v Pseudocode:

v See searchserver_sequential/

7

listen_fd = Listen(port);

while (1) {
client_fd = accept(listen_fd);
buf = read(client_fd);
resp = ProcessQuery(buf);
write(client_fd, resp);
close(client_fd);

}

CSE333, Spring 2022L26: Concurrency and Threads

Whither Sequential?

v Advantages:
§ Super(?) simple to build/write

v Disadvantages:
§ Incredibly poor performance

• One slow client will cause all others to block
• Poor utilization of resources (CPU, network, disk)

8

CSE333, Spring 2022L26: Concurrency and Threads

Threads

v Threads are like lightweight processes
§ They execute concurrently like processes

• Multiple threads can run simultaneously on multiple CPUs/cores

§ Unlike processes, threads cohabitate the same address space
• Threads within a process see the same heap and globals and can

communicate with each other through variables and memory
– But, they can interfere with each other – need synchronization for shared

resources

• Each thread has its own stack

9

CSE333, Spring 2022L26: Concurrency and Threads

Threads and Address Spaces

v Before creating a thread
§ One thread of execution running

in the address space
• One PC, stack, SP

§ That main thread invokes a
function to create a new thread
• Typically pthread_create()

10

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SPparent

PCparent

CSE333, Spring 2022L26: Concurrency and Threads

Threads and Address Spaces

v After creating a thread
§ Two threads of execution running

in the address space
• Original thread (parent) and new

thread (child)
• New stack created for child thread
• Child thread has its own PC, SP

§ Both threads share the other
segments (code, heap, globals)
• They can cooperatively modify

shared data

11

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SPparent

PCparent

StackchildSPchild

PCchild

CSE333, Spring 2022L26: Concurrency and Threads

pthreads Threads

v

v

v

v See thread_example.cc

12

int pthread_create(
pthread_t* thread,
const pthread_attr_t* attr,
void* (*start_routine)(void*),
void* arg);

int pthread_detach(pthread_t thread);

int pthread_join(pthread_t thread,
void** retval);

CSE333, Spring 2022L26: Concurrency and Threads

Concurrent Server with Threads

v A single process handles all of the connections, but a
parent thread dispatches (creates) a new thread to handle
each connection
§ The child thread handles the new connection and then exits when

the connection terminates

13

CSE333, Spring 2022L26: Concurrency and Threads

Multithreaded Server

14

client

server

connect accept()

CSE333, Spring 2022L26: Concurrency and Threads

Multithreaded Server

15

client

server

pthread_create()

CSE333, Spring 2022L26: Concurrency and Threads

Multithreaded Server

16

client

server

accept()

CSE333, Spring 2022L26: Concurrency and Threads

Multithreaded Server

17

client

client

server

pthread_create()

CSE333, Spring 2022L26: Concurrency and Threads

Multithreaded Server

18

client

client

client

client

client

client
server

shared
data

structures

CSE333, Spring 2022L26: Concurrency and Threads

Concurrent Server via Threads

v See searchserver_threads/

v Notes:
§ When calling pthread_create(), start_routine points

to a function that takes only one argument (a void*)
• To pass complex arguments into the thread, create a struct to bundle

the necessary data

§ How do you properly handle memory management?
• Who allocates and deallocates memory?
• How long do you want memory to stick around?

19

CSE333, Spring 2022L26: Concurrency and Threads

Whither Concurrent Threads?

v Advantages:
§ Almost as simple to code as sequential

• In fact, most of the code is identical! (but a bit more complicated to
dispatch a thread)

§ Concurrent execution with good CPU and network utilization
• Some overhead, but less than processes

§ Shared-memory communication is possible

v Disadvantages:
§ Synchronization is complicated
§ Shared fate within a process

• One “rogue” thread can hurt you badly

20

CSE333, Spring 2022L26: Concurrency and Threads

Threads and Data Races

v What happens if two threads try to mutate the same data
structure?
§ They might interfere in painful, non-obvious ways, depending on

the specifics of the data structure

v Example: two threads try to push an item onto the head
of a linked list at the same time
§ Could get “correct” answer
§ Could get different ordering of items
§ Could break the data structure! N
§ Likely will get different results each time you run the program – a

debugging nightmare
21

CSE333, Spring 2022L26: Concurrency and Threads

Data Race Example

v If your fridge has no milk,
then go out and buy some more

v What could go wrong?
v If you live alone:

v If you live with a roommate:

22

if (!milk) {

buy milk

}

! !

CSE333, Spring 2022L26: Concurrency and Threads

Data Race Example

v Idea: leave a note!
§ Does this fix the problem?

A. Yes, problem fixed
B. No, could end up with no milk
C. No, could still buy multiple milk
D. We’re lost…

23

if (!note) {
if (!milk) {
leave note
buy milk
remove note

}
}

CSE333, Spring 2022L26: Concurrency and Threads

Synchronization

v Synchronization is the act of preventing two (or more)
concurrently running threads from interfering with each
other when operating on shared data
§ Need some mechanism to coordinate the threads

• “Let me go first, then you can go”
§ Many different coordination mechanisms have been invented

(see CSE 451)

v Goals of synchronization:
§ Liveness – ability to execute in a timely manner (informally,

“something good happens!”)
§ Safety – avoid unintended interactions with shared data

structures (informally, “nothing bad happens”)

25

CSE333, Spring 2022L26: Concurrency and Threads

Lock Synchronization

v Use a “Lock” to grant access to a critical section so that
only one thread can operate there at a time
§ Executed in an uninterruptible (i.e. atomic) manner

v Lock Acquire
§ Wait until the lock is free,

then take it

v Lock Release
§ Release the lock
§ If other threads are waiting, wake exactly one up to pass lock to

26

// non-critical code

lock.acquire();
// critical section
lock.release();

// non-critical code

loop/idle
if locked

v Pseudocode:

CSE333, Spring 2022L26: Concurrency and Threads

Milk Example – What is the Critical Section?

v What if we use a lock on the
refrigerator?
§ Probably overkill – what if

roommate wanted to get eggs?

v For performance reasons, only
put what is necessary in the
critical section
§ Only lock the milk
§ But lock all steps that must run

uninterrupted (i.e., must run
as an atomic unit)

27

fridge.lock()
if (!milk) {
buy milk

}
fridge.unlock()

milk_lock.lock()
if (!milk) {
buy milk

}
milk_lock.unlock()

CSE333, Spring 2022L26: Concurrency and Threads

pthreads and Locks

v Another term for a lock is a mutex (“mutual exclusion”)
§ pthreads (#include <pthread.h>) defines datatype
pthread_mutex_t

v pthread_mutex_init()

§ Initializes a mutex with specified attributes

v pthread_mutex_lock()
§ Acquire the lock – blocks if already locked

v pthread_mutex_unlock()
§ Releases the lock

28

int pthread_mutex_unlock(pthread_mutex_t* mutex);

int pthread_mutex_lock(pthread_mutex_t* mutex);

int pthread_mutex_init(pthread_mutex_t* mutex,
const pthread_mutexattr_t* attr);

CSE333, Spring 2022L26: Concurrency and Threads

C++11 Threads

v C++11 added threads and concurrency to its libraries
§ <thread> – thread objects
§ <mutex> – locks to handle critical sections
§ <condition_variable> – used to block objects until

notified to resume
§ <atomic> – indivisible, atomic operations
§ <future> – asynchronous access to data
§ These might be built on top of <pthread.h>, but also might

not be

v Definitely use in C++11 code if local conventions allow,
but pthreads will be around for a long, long time
§ Use pthreads in current exercise

29

