L16: C++ Smart Pointers

CSE333, Spring 2022

YA/ UNIVERSITY of WASHINGTON

C++ Smart Pointers
CSE 333 Spring 2022

Instructor:

Hal Perkins

Teaching Assistants:

Esau Abraham

Cleo Chen
Kenzie Mihardja
Justin Tysdal

Nour Ayad Ramya Challa
Sanjana Chintalapati Dylan Hartono
Brenden Page Aakash bin Srazali
Julia Wang Timmy Yang

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

Administrivia

Midterm grading mostly done — hope to release in a day or 3.

New exercise ex13 out this morning. Due Wed. 10 am
= Some basic C++ inheritance fiddling

hw3 due a week from Thursday

= How’s it look?

= VSCode funnies: we’ve seen a report of problems with VSCode getting
confused by #includes in hw3. Is anyone else seeing this? Is it working
as expected for others?

Discussion board request: please use descriptive titles and

provide enough context so readers can find relevant postings

and understand them without a treasure hunt.

= Can someone else discover what your posting is about from the title? If
not, please try to fix that.

- Suggestion: Avoid using “clarification” or “question” in titles ©
= And please use public postings for general questions so all can benefit

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

HW3 Tip

+» HW3 writes some pretty big index files
" Hundreds of thousands of write operations

= No problem for today’s fast machines and disks!!

« EXxcept...

= |f you're running on attu or a CSE lab linux workstation, every
write to your personal directories goes to a network file server(!)

- .~ Lots of slow network packets vs full-speed disks — can take much
longer to write an index to a server vs. a few sec. locally (!!)

- Suggestion: write index files to /tmp/.... That’s a local scratch disk
and is very fast. But please clean up when you’re done.

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

Administrivia (added Wed.)

+» Midterm grades and sample solution out later today

= Regrades enabled starting noon tomorrow; please check answers
against original and sample solution first

+» New exercise ex14 out this morning. Due Fri. 10 am

= Modify an existing program to use smart pointers and make no
other changes

+ hw3 due a week from Thursday

= No further exercises until after that....

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers

Lecture Outline

«~ Smart Pointers
" Intro and toy ptr
" std::unique ptr
= Reference counting

" std::shared ptrandstd::weak ptr

CSE333, Spring 2022

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

Last Time...

«+ We learned about STL

+» We noticed that STL was doing an enormous amount of
copying

+ A solution: store pointers in containers instead of objects

= But who’s responsible for deleting and when???

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

C++ Smart Pointers

« A smart pointer is an object that stores a pointer to a
heap-allocated object

= A smart pointer looks and behaves like a regular C++ pointer
- By overloading *, ->, [], etc.

" These can help you manage memory

- The smart pointer will delete the pointed-to object at the right time
including invoking the object’s destructor
— When that is depends on what kind of smart pointer you use

- With correct use of smart pointers, you no longer have to remember
when to delete heap memory! (Ifit’'s owned by a smart pointer)

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

A Toy Smart Pointer

+» We can implement a simple one with:
= A constructor that accepts a pointer
= A destructor that frees the pointer

" Qverloaded * and —> operators that access the pointer

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

ToyPtr Class Template

ToyPtr.cc
(#ifndef TOYPTR H N
#define TOYPTR H
template <typename T> class ToyPtr {
public:
ToyPtr (T *ptr) : ptr (ptr) { } // constructor
~ToyPtr () { delete ptr ; } // destructor
T &operator*() { return *ptr ; } // * operator
T *operator->() { return ptr ; Y // -> operator
private:
T *ptr ; // the pointer itself
i
#endif // TOYPTR H_
" y,

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

ToyPtr Example

usetoy.cc
N

(#include <iostream>
#include "ToyPtr.h"

// simply struct to illustrate the "->" operator

typedef struct { int x = 1, y = 2; } Point;

std::ostream &operator<<(std::ostream &out, const Point &rhs) {
return out << " (" << rhs.x << "," << rhs.y << ")";

}

int main (int argc, char **argv) {
// Create a dumb pointer
Point *leak = new Point;

// Create a "smart" pointer (OK, it's still pretty dumb)
ToyPtr<Point> notleak (new Point);

std::cout << " *leak: " << *leak << std::endl;
std::cout << " leak->x: " << leak->x << std::endl;
std::cout << " “Fnotleak: " << *notleak << std::endl;
std::cout << "notleak->x: " << notleak->x << std::endl;

return 0;

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

What Makes This a Toy?

+» Can’t handle:
= Arrays
= Copying
" Reassignment
= Comparison

= .. plus many other subtleties...

+ Luckily, others have built non-toy smart pointers for us!

11

YA/ UNIVERSITY of WASHINGTON

L16: C++ Smart Pointers

std: :unique ptr

+ Aunigue ptr takes ownership of a pointer

= Atemplate: template parameter is the type that the “owned”
pointer references (i.e., the T in pointer type T *)

= Part of C++’s standard library (C++11)
" |ts destructor invokes delete on the owned pointer

- Invoked when unique ptr objectis delete’d or falls out of scope

12

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

Using unique ptr

uniquel.cc
(#include <iostream> // for std::cout, std::endl 0

finclude <memory> // for std::unique ptr
#include <cstdlib> // for EXIT SUCCESS
void Leaky () {

int *x = new int(5); // heap-allocated

(*x) ++;

std::cout << *x << std::endl;
} // never used delete, therefore leak
void NotLeaky () {

std::unique ptr<int> x(new int(5)); // wrapped, heap-allocated

(*x) ++;
std: :cout << *x << std::endl;
} // never used delete, but no leak

int main(int argc, char **argv) {
Leaky () ;
NotLeaky () ;
return EXIT SUCCESS;

\} J

13

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

Why are unique ptrs useful?

+ If you have many potential exits out of a function, it’s easy
to forget to call delete on all of them
" unique ptr willdelete its pointer when it falls out of scope

" Thus,aunigque ptr also helps with exception safety

(void NotLeaky () {
std: :unique ptr<int> x(new int (5));

// lots of code, including several returns
// lots of code, including potential exception throws

14

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

unique ptr Operations

unique2.cc
N

(#include <memory> // for std::unique ptr
#include <cstdlib> // for EXIT SUCCESS

using namespace std;
typedef struct { int a, b; } IntPair;

int main(int argc, char **argv) {
unique ptr<int> x(new int(5));

int *ptr = x.get(); // Return a pointer to pointed-to object
int val = *x; // Return the value of pointed-to object

// Access a field or function of a pointed-to object
unique ptr<IntPair> ip(new IntPair);
ip->a = 100;

// Deallocate current pointed-to object and store new polnter
x.reset (new int(l));

ptr = x.release(); // Release responsibility for freeing
delete ptr;
return EXIT SUCCESS;

15

Transferring Ownership

+ Use reset () and release () to transfer ownership

" release returns the pointer, sets wrapped pointer to nullptr

" reset delete’s the current pointer and stores a new one

(int main (int argc, char **argv) {

N
| unique3.cc
unique ptr<int> x(new 1nt(5));

cout << "x: " << x.get() << endl;

unique ptr<int> y(x.release()); // x abdicates ownership to y
cout << "x: " << x.get() << endl;

cout << "y: " << y.get() << endl;
unique ptr<int> z(new int (10));

// vy transfers ownership of its pointer to z.
// z's old pointer was delete'd in the process.
z.reset(y.release());

return EXIT SUCCESS;

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

16

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

unique ptrs Cannot Be Copied

+ std::unique ptr hasdisabled its copy constructor
and assignment operator

" You cannot copy a unique ptr, helping maintain “uniqueness”

or “ownership” _ _
uniquefail.cc

r#include <memory> // for std::unique ptr b
#include <cstdlib> // for EXIT SUCCESS
int main (int argc, char **argv) {
std::unique ptr<int> x(new int(5)); // OK
std::unique ptr<int> y(x); // fail - no copy ctor
std::unique ptr<int> z; // OK — z 1s nullptr
zZ = X; // fail - no assignment op
return EXIT SUCCESS;
n} J

17

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

unique ptr and STL

+ unique ptrscan be stored in STL containers

= Wait, what? STL containers like to make lots of copies of stored
objects and unique ptrs cannot be copied...

+» Move semantics to the rescue!

"= When supported, STL containers will move rather than copy

- unique ptrssupport move semantics

18

Aside: Copy Semantics

+ Assigning values typically means making a copy

= Sometimes this is what you want
- e.g. assigning a string to another makes a copy of its value

= Sometimes this is wasteful

- e.g. assigning a returned string goes through a temporary copy

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

}

int main(int argc, char **argv) {
std::string a("hello");
std::string b(a); // copy a into b

b = ReturnFoo () ; // copy return value into b

return EXIT SUCCESS;
}

rstd::string ReturnFoo (void) { copyamnantk5£cj
std::string x("foo");
return x; // this return might copy

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

Move Semantics (added in C++11)

movesemantics.cc

+ “Move semantics”

rstd::string ReturnFoo (void) {)

move Va|ues from std::string x("foo");
i // this return might copy
one object to return x;

another without }

int main(int argc, char **argv) {

. (o . V4
Copylng (Steallng) std::string a("hello");
= Useful for optimizing // moves a to b
. std::string b = std::move (a);
W Mporar I
away te porary copies std::cout << "a: " << a << std::endl;
m Acomplex topic that std::cout << "b: " << b << std::endl;
usest#ﬂngsca”ed // moves the returned value into b
“« ” b = std: :move (ReturnFoo ()) ;
rvalue referen
alue ETE ences std::cout << "b: " << b << std::endl;

- Mostly beyond the
scope of 333 this }
quarter

return EXIT SUCCESS;

20

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

Transferring Ownership via Move

+ unique ptr supports move semantics

= Can “move” ownership from one unique ptr to another

- Behavior is equivalent to the “release-and-reset” combination

(int main (int argc, char **argv) {
unique ptr<int> x(new int(5));
cout << "x: " << x.get() << endl;

X
uniqueé.cc

unique ptr<int> y = std::move(x); // x abdicates ownership to y
cout << "x: " << x.get() << endl;

cout << "y: " << y.get() << endl;
unique ptr<int> z(new int(10));

// v transfers ownership of 1its pointer to z.
// z's old pointer was delete'd in the process.
z = std::move (y);

return EXIT SUCCESS;

21

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

unique ptr and STL Example

uniguevec.cc
{)

(int main (int argc, char **argv)
std: :vector<std::unique ptr<int> > vec;

vec.push back (std::unique ptr<int>(new int (9)));
vec.push back (std::unique ptr<int>(new int (5)));
vec.push back (std::unique ptr<int>(new int(7)));

// z gets a copy of int value pointed to by vec[1]
int z = *vec[l];
std::cout << "z 1s: " << z << std::endl;

// won’t compile! Cannot copy unique ptr
std::unique ptr<int> copied = vec[l]; // hmmm. . .

// Works! vec[l] now wraps a nullptr

std: :unique ptr<int> moved = std::move(vec[l]);
std::cout << "*moved: " << *moved << std::endl;
std: :cout << "vec[l].get(): " << vec[l].get() << std::endl;

return EXIT SUCCESS;

23

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

unique ptr and “<”

+ Aunigque ptr implements some comparison
operators, including operator<

"= However, it doesn’t invoke operator< on the pointed-to
objects

- Instead, it just promises a stable, strict ordering (probably based on
the pointer address, not the pointed-to-value)

" Sotouse sort () onvectors, you want to provide it with a
comparison function

24

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

unique ptr and STL Sorting

uniquevecsort.cc
S

(using namespace std;

bool sortfunction(const unique ptr<int> &x,
const unique ptr<int> &y) { return *x < *y; }
void printfunction (unique ptr<int> &x) { cout << *x << endl; }

int main(int argc, char **argv) {
vector<unique ptr<int> > vec;

vec.push_back?unique_ptr<int>(new int (9)));
vec.push back (unique ptr<int>(new 1int (5)));
vec.push back (unique ptr<int>(new int(7)));

// buggy: sorts based on the values of the ptrs
sort (vec.begin (), vec.end());

cout << "Sorted:" << endl;

for each(vec.begin(), vec.end(), &printfunction);

// better: sorts based on the pointed-to values
sort (vec.begin(), vec.end(), é&sortfunction);

cout << "Sorted:" << endl;

for each(vec.begin(), vec.end(), &printfunction);

return EXIT SUCCESS;

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers

unique ptr, “<”, and maps

+ Similarly, you can use unique ptrsaskeysinamap
= Reminder: a map internally stores keys in sorted order
- lIterating through the map iterates through the keys in order
= By default, “<” is used to enforce ordering

- You must specify a comparator when constructing the map to get a
meaningful sorted order using “<” of unique ptrs

+» Compare (the 37 template) parameter:

= “A binary predicate that takes two element keys as arguments
and returns a bool. This can be a function pointer or a function
object.”

« bool fptr(Tls& lhs, Tl& rhs); OR member function
bool operator() (const Tl& lhs, const T1& rhs);

26

CSE333, Spring 2022

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

unique ptr and map Example

uniquemap.cc

~

[struct MapComp {
bool operator () (const unique ptr<int> é&lhs,
const unique ptr<int> &rhs) const { return *lhs < *rhs; }

b g

int main(int argc, char **argv) {
map<unique ptr<int>, int, MapComp> a map; // Create the map

unique ptr<int> a(new int(5)); // unique ptr for key
unique ptr<int> b(new int(9));
unique ptr<int> c(new int(7));

a map[std::move(a)] = 25; // move semantics to get ownership
a map[std::move(b)] = 81; // of unique ptrs into the map.
a map[std::move(c)] = 49; // a, b, c hold NULL after this.

map<unique ptr<int>,int>::iterator it;

for (it = a map.begin(); it != a map.end(); it++) {
std::cout << "key: " << *(it->first);
std::cout << " wvalue: " << it->second << std::endl;

}
return EXIT SUCCESS;

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers

unique ptr and Arrays

+ unique ptr can store arrays as well

" Will call delete[] on destruction

CSE333, Spring 2022

unique5.cc

[#include <memory> // for std::unique ptr
#include <cstdlib> // for EXIT SUCCESS

using namespace std;

int main(int argc, char **argv) {
unique ptr<int[]> x(new int[5]);

return EXIT SUCCESS;

~

28

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

std: :shared ptr

+ shared ptrissimilartounigque ptr butwe allow
shared objects to have multiple owners
= The copy/assign operators are not disabled and increment or
decrement reference counts as needed

- After a copy/assign, the two shared ptr objects point to the same
pointed-to object and the (shared) reference count is 2

" Whenashared ptr isdestroyed, the reference count is
decremented

- When the reference count hits 0, we de 1 ete the pointed-to object!

= Allows us to create complex linked structures (double-linked lists,
graphs, etc.) at the cost of maintaining reference counts

29

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

What is Reference Counting?

+ ldea: associate a reference count with each object
= Reference count holds number of references (pointers) to the
object
= Adjusted whenever pointers are changed:
- Increase by 1 each time we have a new pointer to an object

- Decrease by 1 each time a pointer to an object is removed

= When reference counter decreased to 0, no more pointers to the
object, so delete it (automatically)

+ Used by C++ shared_ptr, not used in general for C++
memory management

30

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

Reference Counting

+ Suppose for the moment that we have a new C++ -like
language that uses reference counting for heap data

« As in C++, a struct is a type with public fields, so we can
implement lists of integers using the following Node type

struct Node {

int payload; // node payload

Node * next; // next Node or nullptr
Y

+ The reference counts would be handled behind the scenes
by the memory manager code — they are not accessible to
the programmer

31

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers

CSE333, Spring 2022

Example 1

+ Let’s execute the following code. Heap data is shown
using rectangles; associated reference counts with ovals

m— Node * p = new Node () ;

Node * g = new Node()
Node * r = p;

g->next = new Node () ;
p = nullptr;

r = nullptr;

g = nullptr;
G

32

YA/ UNIVERSITY of WASHINGTON

L16: C++ Smart Pointers

CSE333, Spring 2022

Example 1

+ Let’s execute the following code. Heap data is shown
using rectangles; associated reference counts with ovals

©

Pl ey
\
q
r
[(Node * p = new Node () ;
=P NOode * g = new Node ()
Node * r = p;
g->next = new Node () ;

.

p = nullptr;
r = nullptr;
g = nullptr;

33

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

Example 1

+ Let’s execute the following code. Heap data is shown
using rectangles; associated reference counts with ovals

©

p.‘\

q ~\@

[(Node * p = new Node () ;)
Node * g = new Node()

)l Node * r = p;
g->next = new Node () ;

p = nullptr;
r = nullptr;
g = nullptr;

. J

34

YA/ UNIVERSITY of WASHINGTON

L16: C++ Smart Pointers

CSE333, Spring 2022

Example 1

+ Let’s execute the following code. Heap data is shown
using rectangles; associated reference counts with ovals

@

Pl ey
a [@
r
[(Node * p = new Node () ;
Node * g = new Node()
Node * r = p;
—)! g->next = new Node();
p = nullptr;
r = nullptr;
q = nullptr;
G

35

YA/ UNIVERSITY of WASHINGTON

L16: C++ Smart Pointers

CSE333, Spring 2022

Example 1

+ Let’s execute the following code. Heap data is shown
using rectangles; associated reference counts with ovals

@

Pl ey
1 [©, @
.- >
r
[(Node * p = new Node () ;
Node * g = new Node()
Node * r = p;
g->next = new Node () ;
r = nullptr;
g = nullptr;
G

36

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

Example 1

+ Let’s execute the following code. Heap data is shown
using rectangles; associated reference counts with ovals

o [/] @
a [@ @

[(Node * p = new Node () ;)
Node * g = new Node()

Node * r = p;

g->next = new Node () ;

p = nullptr;

) r = nullptr;
g = nullptr;

37

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

Example 1

+ Let’s execute the following code. Heap data is shown
using rectangles; associated reference counts with ovals

o [/] ©
G k\)@ @

[(Node * p = new Node () ;)
Node * g = new Node()

Node * r = p;

g->next = new Node () ;

p = nullptr;
r = nullptr;
! = nullptr;

38

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

Example 1

+ Let’s execute the following code. Heap data is shown
using rectangles; associated reference counts with ovals

%
1% ©

r

[(Node * p = new Node () ;)
Node * g = new Node()

Node * r = p;

g->next = new Node () ;

p = nullptr;
r = nullptr;
g = nullptr;

39

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers

Example 2

« Similar to the previous code, but slightly different

—prNode * g = new Node()

Node * r = new Node () ;
g->next = r;
r->next = gy

r = nullptr;
g = nullptr;

CSE333, Spring 2022

40

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

Example 2

« Similar to the previous code, but slightly different

©
7

g | e
r
[(Node * q = new Node () ;)
=P Node * r = new Node () ;
g->next = r;
r->next = gy
r = nullptr;
g = nullptr;
L J

41

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers

Example 2

« Similar to the previous code, but slightly different

© ©

_—

g | e
r | e
rNode * g = new Node();
Node * r = new Node () ;
) J->next = r;
r->next = gy

r = nullptr;
g = nullptr;

CSE333, Spring 2022

42

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers

Example 2

« Similar to the previous code, but slightly different

© @
//”’? =

g | e
r | e
rNode * g = new Node();
Node * r = new Node () ;
g->next = r;

)l r->next = g;
r = nullptr;
g = nullptr;

CSE333, Spring 2022

43

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

Example 2

« Similar to the previous code, but slightly different

@ @

o ®
g | e
r | e
[(Node * g = new Node() ;)
Node * r = new Node () ;
g->next = r;
r->next = gy
=) © = nullptr;
g = nullptr;
q J

44

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers

Example 2

« Similar to the previous code, but slightly different

@ @

"/

rNode * g = new Node();
Node * r = new Node () ;
g->next = r;

r->next = gy

r = nullptr;
)] 0 = nullptr;

CSE333, Spring 2022

45

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers

Example 2

« Similar to the previous code, but slightly different

@ @

> T Memory leak!
q //
%
rNode * g = new Node();
Node * r = new Node () ;
g->next = r;
r->next = gy

r = nullptr;
g = nullptr;

CSE333, Spring 2022

46

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

Review std: : shared ptr

+ shared ptrissimilartounigque ptr butwe allow
shared objects to have multiple owners
= The copy/assign operators are not disabled and they increment or
decrement reference counts as needed

- After a copy/assign, the two shared ptr objects point to the same
pointed-to object and the (shared) reference count is 2

" Whenashared ptr isdestroyed, the reference count is
decremented

- When the reference count hits 0, we de 1 ete the pointed-to object!

= Allows us to create complex linked structures (double-linked lists,
graphs, etc.) at the cost of maintaining reference counts

47

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

shared ptr Example

sharedexample.cc

~

r#include <cstdlib> // for EXIT SUCCESS
#include <iostream> // for std::cout, std::endl
#include <memory> // for std::shared ptr

int main(int argc, char **argv) {
std::shared ptr<int> x(new int(10)); // ref count: 1

// temporary inner scope with local y (!)

{

std::shared ptr<int> y = x; // ref count: 2
std::cout << *y << std::endl;
} // exit scope, y deleted
std::cout << *x << std::endl; // ref count: 1

return EXIT SUCCESS;
} // ref count: 0

. J

48

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

shared ptrsand STL Containers

+ Even simpler than unique ptrs

= Safe to store shared ptrsin containers, since copy & assign

maintain a shared reference count
sharedvec.cc

~

rvector<std::shared_ptr<int> > vec;

vec.push back (std::shared ptr<int>(new int(9)));

vec.push back (std::shared ptr<int>(new int(5)));
vec.push back (std::shared ptr<int>(new int(7)));
int &z = *vec]|[l];

std::cout << "z 1s: " << z << std::endl;

std::shared ptr<int> copied = vec[l]; // works!

std::cout << "*copied: " << *copied << std::endl;
std::shared ptr<int> moved = std::move(vec[l]); // works!
std::cout << "*moved: " << *moved << std::endl;

std::cout << "vec[l].get(): " << vec[l].get() << std::endl;

49

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

shared ptrs Must Share Nicely

+ Awarning: shared ptr reference counting works as
long as the shared references to the same object result
from making copies of existing shared ptr values

» If we create multiple shared ptrsusingthe same raw
pointer, the shared ptrs will have separate reference
counts. When any of those reference counters decrement
to 0, that shared ptr will delete the owned object,
and the other shared ptrsnow have dangling pointers
— which they will later (double) delete! Bug!!

50

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

shared ptr Warning

sharedbug.cc
<

r#include <cstdlib> // for EXIT SUCCESS
#include <iostream> // for std::cout, std::endl
#include <memory> // for std::shared ptr

int main(int argc, char **argv) {
std::shared ptr<int> x(new int(10)); // ref count: 1
std::shared ptr<int> y(x); // ref count: 2

int *p = new 1nt(10);
std: :shared ptr<int> xbug(p); // ref count: 1
std::shared ptr<int> ybug(p); // separate ref count: 1

return EXIT SUCCESS;
} // x and y ref count: 0 - ok delete
// xbug and ybug ref counts both 0
// both try to delete p
// —— double-delete error!

51

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

Cycle of shared ptrs

strongcycle.cc

~

[#include <cstdlib>
#include <memory>

head

using std::shared ptr;

struct A { 2 1
shared ptr<A> next; o —
shared ptr<A> prev;

bg

int main(int argc, char **argv) {
shared ptr<A> head(new A());
head->next = shared ptr<A>(new A());
head->next->prev = head; e e e e

3
O
>
ct
3
O
>
ct

return EXIT SUCCESS;

+» What happens when we delete head?

52

YA/ UNIVERSITY of WASHINGTON

L16: C++ Smart Pointers

Cycle of shared ptrs

strongcycle.cc

[#include <cstdlib>
#include <memory>

using std::shared ptr;

struct A {
shared ptr<A> next;
shared ptr<A> prev;

bg

int main (int argc, char **argv) {
shared ptr<A> head(new A());
head->next = shared ptr<A>(new A());
head->next->prev = head;

return EXIT SUCCESS;

~

+» What happens when we delete head? Nodes

head

CSE333, Spring 2022

unreachable but not deleted because ref counts >0

53

YA/ UNIVERSITY of WASHINGTON

L16: C++ Smart Pointers

CSE333, Spring 2022

std::weak_ptr

J/

+ weak ptrissimilartoa shared ptr butdoesn’t
affect the reference count
= Canonly “point to” an object that is managed by a shared ptr

= Not really a pointer — can’t actually dereference unless you “get”
its associated shared ptr

" Because it doesn’t influence the reference count, weak ptrs
can become “dangling”

- Object referenced may have been delete’d

- But you can check to see if the object still exists

+ Can be used to break our cycle problem!

54

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

Breaking the Cycle with weak ptr

weakcycle.cc

~

[#include <cstdlib>
#include <memory>

head

using std::shared ptr;
using std::weak ptr;

struct A { F————— =
shared ptr<A> next;
weak ptr<A> prev;

b g

int main(int argc, char **argv) {
shared ptr<A> head(new A());
head->next = shared ptr<A>(new A()); e e - -
head->next->prev = head;

3
]
]
o+
3
]
]
o+
IS

return EXIT SUCCESS;

L} J

+» Now what happens when we delete head?

55

L16: C++ Smart Pointers

CSE333, Spring 2022

YA/ UNIVERSITY of WASHINGTON

Breaking the Cycle with weak ptr

weakcycle.cc

[#include <cstdlib>
#include <memory>

using std::shared ptr;
using std::weak ptr;

struct A {
shared ptr<A> next;
weak ptr<A> prev;

b g

int main(int argc, char **argv) {
shared ptr<A> head(new A());
head->next = shared ptr<A>(new A());
head->next->prev = head;

return EXIT SUCCESS;

)

~

J

head

+» Now what happens when we delete head? Ref counts

go to 0 and nodes deleted!

56

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

Using aweak ptr

usingweak.cc

~

r#include <cstdlib> // for EXIT SUCCESS
#include <iostream> // for std::cout, std::endl
#include <memory> // for std::shared ptr, std::weak ptr

int main(int argc, char **argv) {
std::weak ptr<int> w;

{ // temporary inner scope with local x

std: :shared ptr<int> x;

{ // temporary inner-inner scope with local y
std: :shared ptr<int> y(new int (10));
w = y; // weak ref; ref count for “10” node is same
x = w.lock(); // get "promoted" shared ptr, ref cnt = 2
std::cout << *x << std::endl;

} // vy deleted; ref count now I

std::cout << *x << std::endl;

} // x deleted; ref count now 0,; mem freed
std::shared ptr<int> a = w.lock(); // nullptr
std::cout << a << std::endl; // output is 0 (null)

return EXIT SUCCESS;

57

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2022

Reference Counting Perspective

+ Reference counting is a technique for managing resources
by counting and storing number of references to an object
(i.e., # of pointers that hold the address of the object)

" |ncrement or decrement count as pointers are changed

= Delete the object when reference count decremented to O

+» Works great! But...
= Bunch of extra overhead on every pointer operation
= Cannot reclaim linked objects with circular references

= Not general enough for automatic memory management (need
automatic garbage collection as in Java), but when it’s appropriate
it’s a clean solution for resource management and cleanup
- ex.: directory links to files in Linux — delete file when link count = 0!

58

CSE333, Spring 2022

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers

Summary

+ Aunigue ptr takes ownership of a pointer

= Cannot be copied, but can be moved
= get () returns a copy of the pointer, but is dangerous to use;
better to use release () instead

" reset () deletesold pointer value and stores a new one

+ A shared ptr allows shared objects to have multiple
owners by doing reference counting
= deletesan object once its reference count reaches zero

+ Aweak ptr works with a shared object but doesn’t
affect the reference count

= Can’t actually be dereferenced, but can check if the object still

exists and can get a shared ptr fromthe weak ptrifitdoes
59

