
CSE333, Spring 2022L10: C++ Intro

C++ Intro
CSE 333 Spring 2022

Instructor: Hal Perkins

Teaching Assistants:
Esau Abraham Nour Ayad Ramya Challa
Cleo Chen Sanjana Chintalapati Dylan Hartono
Kenzie Mihardja Brenden Page Aakash bin Srazali
Justin Tysdal Julia Wang Timmy Yang

CSE333, Spring 2022L10: C++ Intro

Administrivia

v Exercise 7 posted yesterday, due Monday
§ POSIX I/O for directories and reading data from files
§ Read a directory and open/copy text files found there

• Copy exactly and only the bytes in the file(s). No extra output, no
“formatting” or any other transformations.

§ Good warm-up for…

v Homework 2 due in two weeks (4/28)
§ File system crawler, indexer, and search engine
§ Spec posted now
§ Starter files will be pushed out this afternoon
§ Demo in class today!

Now? 2

CSE333, Spring 2022L10: C++ Intro

Administrivia (Monday)
v New exercise out today – First C++ program: read a number and

print its factors
§ Due Wed. morning
§ New style checker for C++ – cpplint – linked to assignment, also pushed with

hw2 starter code for use with exercises and hw3

v HW2 – how’s it look? Be sure to make good progress this week

v HW project submission: all based on commits and tags in gitlab repo.
We upload the code to gradescope for markup but that creates
strange dates on gradscope – pay no attention to those. The gitlab
commit timestamp is what matters.

v Have you finished your taxes? 💰💵💸 (Due tonight) J

3

CSE333, Spring 2022L10: C++ Intro

If things are starting to get difficult…

v We’re starting week 4 of the quarter and for most of us,
so far, so good

v But some of us are dealing with unexpected things
(illness, personal situations) and for a lot more of us the
world is still not really back to “normal” (whatever that is)

v If you’re having problems, please reach out to course
staff, Allen School Advising, UW Counseling Center, or
other resources, etc.
§ Say something if you could use some help, or just need to talk –

don’t bottle it up and hope that it will magically get better

v Try to stay on schedule – don’t plan in advance to use late
days, etc. and speak up if that’s not working.

4

CSE333, Spring 2022L10: C++ Intro

Today’s Goals

v An introduction to C++
§ Some comparisons to C and shortcomings that C++ addresses
§ Give you a perspective on how to learn C++
§ Kick the tires and look at some code

v Advice: You must read related sections in the C++ Primer
§ It’s hard to learn the “why is it done this way” from reference

docs, and even harder to learn from random stuff on the web
§ Lectures and examples will introduce the main ideas, but aren’t

everything you’ll want need to understand
§ 3 hours of web searching might save you 20 min. of reading in the

Primer – but is that a good tradeoff?
§ And free access through UW libraries (O’Reilly books online)

5

CSE333, Spring 2022L10: C++ Intro

C

v We had to work hard to mimic encapsulation, abstraction
§ Encapsulation: hiding implementation details

• Used header file conventions and the “static” specifier to separate
private functions from public functions

• Cast structures to (void*) to hide implementation-specific details

§ Abstraction: associating behavior with encapsulated state
• Function that operate on a LinkedList were not really tied to the

linked list structure
• We passed a linked list to a function, rather than invoking a method

on a linked list instance

6

CSE333, Spring 2022L10: C++ Intro

C++

v A major addition is support for classes and objects!
§ Classes

• Public, private, and protected methods and instance variables
• (multiple!) inheritance

§ Polymorphism
• Static polymorphism: multiple functions or methods with the same

name, but different argument types (overloading)
– Works for all functions, not just class members

• Dynamic (subtype) polymorphism: derived classes can override
methods of parents, and methods will be dispatched correctly

7

CSE333, Spring 2022L10: C++ Intro

C

v We had to emulate generic data structures
§ Generic linked list using void* payload
§ Pass function pointers to generalize different “methods” for data

structures
• Comparisons, deallocation, pickling up state, etc.

8

CSE333, Spring 2022L10: C++ Intro

C++

v Supports templates to facilitate generic data types
§ Parametric polymorphism – same idea as Java generics, but

different in details, particularly implementation
§ To declare that x is a vector of ints: vector<int> x;
§ To declare that x is a vector of strings: vector<string> x;
§ To declare that x is a vector of (vectors of floats):
vector<vector<float>> x;

9

CSE333, Spring 2022L10: C++ Intro

C

v We had to be careful about namespace collisions
§ C distinguishes between external and internal linkage

• Use static to prevent a name from being visible outside a source
file (as close as C gets to “private”)

• Otherwise, name is global and visible everywhere

§ We used naming conventions to help avoid collisions in the global
namespace
• e.g. LLIteratorNext vs. HTIteratorNext, etc.

10

CSE333, Spring 2022L10: C++ Intro

C++

v Permits a module to define its own namespace!
§ The linked list module could define an “LL” namespace while the

hash table module could define an “HT” namespace
§ Both modules could define an Iterator class

• One would be globally named LL::Iterator
• The other would be globally named HT::Iterator

v Classes also allow duplicate names without collisions
§ Namespaces group and isolate names in collections of classes and

other “global” things (somewhat like Java packages)
• Entire C++ standard library is in a namespace std (more later…)

11

CSE333, Spring 2022L10: C++ Intro

C

v C does not provide any standard data structures
§ We had to implement our own linked list and hash table
§ As a C programmer, you often reinvent the wheel… poorly

• Maybe if you’re clever you’ll use somebody else’s libraries
• But C’s lack of abstraction, encapsulation, and generics means you’ll

probably end up tinkering with them or tweak your code to use them

12

CSE333, Spring 2022L10: C++ Intro

C++

v The C++ standard library is huge!
§ Generic containers: bitset, queue, list, associative array

(including hash table), deque, set, stack, and vector
• And iterators for most of these

§ A string class: hides the implementation of strings
§ Streams: allows you to stream data to and from objects,

consoles, files, strings, and so on
§ And more…

13

CSE333, Spring 2022L10: C++ Intro

C

v Error handling is a pain
§ Have to define error codes and return them
§ Customers have to understand error code conventions and need

to constantly test return values
§ e.g. if a() calls b(), which calls c()

• a depends on b to propagate an error in c back to it

14

CSE333, Spring 2022L10: C++ Intro

C++

v Supports exceptions!
§ try / throw / catch
§ If used with discipline, can simplify error processing

• But, if used carelessly, can complicate memory management
• Consider: a() calls b(), which calls c()

– If c() throws an exception that b() doesn’t catch, you might not get a
chance to clean up resources allocated inside b()

§ But much C++ code still needs to work with C & old C++ libraries
that are not exception-safe, so still uses return codes, exit(), etc.
• We won’t use (and Google style guide doesn’t use either)

15

CSE333, Spring 2022L10: C++ Intro

Some Tasks Still Hurt in C++

v Memory management
§ C++ has no garbage collector

• You have to manage memory allocation and deallocation and track
ownership of memory

• It’s still possible to have leaks, double frees, and so on

§ But there are some things that help
• “Smart pointers”

– Classes that encapsulate pointers and track reference counts
– Deallocate memory when the reference count goes to zero

• C++’s destructors permit a pattern known as “Resource Allocation Is
Initialization” (RAII) (terrible name but super useful)
– Useful for releasing memory, locks, database transactions, and more

16

CSE333, Spring 2022L10: C++ Intro

Some Tasks Still Hurt in C++

v C++ doesn’t guarantee type or memory safety
§ You can still:

• Forcibly cast pointers between incompatible types
• Walk off the end of an array and smash memory
• Have dangling pointers
• Conjure up a pointer to an arbitrary address of your choosing

17

CSE333, Spring 2022L10: C++ Intro

C++ Has Many, Many Features

v Operator overloading
§ Your class can define methods for handling “+”, “->”, etc.

v Object constructors, destructors
§ Particularly handy for stack-allocated objects

v Reference types
§ Truly pass-by-reference instead of always pass-by-value

v Advanced Objects
§ Multiple inheritance, virtual base classes, dynamic dispatch

18

CSE333, Spring 2022L10: C++ Intro

How to Think About C++

19

Set of styles
and ways to

use C++

Set of styles
and ways to

use C

Good styles
and robust
engineering

practices

Style
guides

CSE333, Spring 2022L10: C++ Intro

Or…

20

In the hands of a disciplined
programmer, C++ is a

powerful tool

But if you’re not so
disciplined about how you

use C++…

CSE333, Spring 2022L10: C++ Intro

Hello World in C

v You never had a chance to write this!
§ Compile with gcc:

§ You should be able to describe in detail everything in this code

#include <stdio.h> // for printf()
#include <stdlib.h> // for EXIT_SUCCESS

int main(int argc, char** argv) {
printf("Hello, World!\n");
return EXIT_SUCCESS;

}

helloworld.c

gcc -Wall -g -std=c17 -o hello helloworld.c

21

CSE333, Spring 2022L10: C++ Intro

Hello World in C++

v Looks simple enough…
§ Compile with g++ instead of gcc:

§ Let’s walk through the program step-by-step to highlight some
differences

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
std::cout << "Hello, World!" << std::endl;
return EXIT_SUCCESS;

}

g++ -Wall -g -std=c++17 -o helloworld helloworld.cc

helloworld.cc

22

CSE333, Spring 2022L10: C++ Intro

Hello World in C++

v iostream is part of the C++ standard library
§ Note: you don’t write “.h” when you include C++ standard library

headers
• But you do for local headers (e.g. #include "ll.h")

§ iostream declares stream object instances in the “std”
namespace
• e.g. std::cin, std::cout, std::cerr

23

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
std::cout << "Hello, World!" << std::endl;
return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Spring 2022L10: C++ Intro

Hello World in C++

v cstdlib is the C standard library’s stdlib.h
§ Nearly all C standard library functions are available to you

• For C header foo.h, you should #include <cfoo>

§ We include it here for EXIT_SUCCESS, as usual

24

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
std::cout << "Hello, World!" << std::endl;
return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Spring 2022L10: C++ Intro

Hello World in C++

v std::cout is the “cout” object instance declared by
iostream, living within the “std” namespace
§ C++’s name for stdout
§ std:cout is an object of class ostream

• http://www.cplusplus.com/reference/ostream/ostream/

§ Used to format and write output to the console
§ The entire standard library is in the namespace std

25

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
std::cout << "Hello, World!" << std::endl;
return EXIT_SUCCESS;

}

helloworld.cc

http://www.cplusplus.com/reference/ostream/ostream/

CSE333, Spring 2022L10: C++ Intro

Hello World in C++

v C++ distinguishes between objects and primitive types
§ These include the familiar ones from C:
char, short, int, long, float, double, etc.

§ C++ also defines bool as a primitive type (woo-hoo!)
• Use it!
• (but bool and int values silently convert types for compatiblity)

26

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
std::cout << "Hello, World!" << std::endl;
return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Spring 2022L10: C++ Intro

Hello World in C++

v “<<” is an operator defined by the C++ language
§ Defined in C as well: usually it bit-shifts integers (in C/C++)
§ C++ allows classes and functions to overload operators!

• Here, the ostream class overloads “<<”
• i.e. it defines different member functions (methods) that are invoked

when an ostream is the left-hand side of the << operator

27

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
std::cout << "Hello, World!" << std::endl;
return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Spring 2022L10: C++ Intro

Hello World in C++

v ostream has many different methods to handle <<
§ The functions differ in the type of the right-hand side (RHS) of <<
§ e.g. if you do std::cout << "foo"; , then C++ invokes
cout’s function to handle << with RHS char*

28

std::cout << "foo";

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
std::cout << "Hello, World!" << std::endl;
return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Spring 2022L10: C++ Intro

Hello World in C++

v The ostream class’ member functions that handle <<
return a reference to themselves
§ When std::cout << "Hello, World!"; is evaluated:

• A member function of the std::cout object is invoked
• It buffers the string "Hello, World!" for the console
• And it returns a reference to std::cout

29

std::cout << "Hello, World!";

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
std::cout << "Hello, World!" << std::endl;
return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Spring 2022L10: C++ Intro

Hello World in C++

v Next, another member function on std::cout is
invoked to handle << with RHS std::endl
§ std::endl is a pointer to a “manipulator” function

• This manipulator function writes newline ('\n') to the ostream it
is invoked on and then flushes the ostream’s buffer

• This enforces that something is printed to the console at this point

30

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
std::cout << "Hello, World!" << std::endl;
return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Spring 2022L10: C++ Intro

Wow…

v You should be surprised and scared at this point
§ C++ makes it easy to hide a significant amount of complexity

• It’s powerful, but really dangerous
• Once you mix everything together (templates, operator overloading,

method overloading, generics, multiple inheritance), it can get really
hard to know what’s actually happening!

31

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
std::cout << "Hello, World!" << std::endl;
return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Spring 2022L10: C++ Intro

Let’s Refine It a Bit

v C++’s standard library has a std::string class
§ Include the string header to use it

• Seems to be automatically included in iostream on CSE Linux
environment (C++11) – but include it explicitly anyway if you use it

§ http://www.cplusplus.com/reference/string/

#include <iostream>
#include <cstdlib>
#include <string>

using namespace std;

int main(int argc, char** argv) {
string hello("Hello, World!");
cout << hello << endl;
return EXIT_SUCCESS;

}

helloworld2.cc

32

http://www.cplusplus.com/reference/string/

CSE333, Spring 2022L10: C++ Intro

Let’s Refine It a Bit

v The using keyword introduces a namespace (or part of)
into the current region
§ using namespace std; imports all names from std::
§ using std::cout; imports only std::cout

(used as cout)

33

using namespace std;

using std::cout;

#include <iostream>
#include <cstdlib>
#include <string>

using namespace std;

int main(int argc, char** argv) {
string hello("Hello, World!");
cout << hello << endl;
return EXIT_SUCCESS;

}

helloworld2.cc

CSE333, Spring 2022L10: C++ Intro

Let’s Refine It a Bit

v Benefits of
§ We can now refer to std::string as string, std::cout

as cout, and std::endl as endl
• Google style guide says never use using namespace, only using

for individual items; but for 333 using namespace std; is ok

34

using namespace std;

#include <iostream>
#include <cstdlib>
#include <string>

using namespace std;

int main(int argc, char** argv) {
string hello("Hello, World!");
cout << hello << endl;
return EXIT_SUCCESS;

}

helloworld2.cc

CSE333, Spring 2022L10: C++ Intro

Let’s Refine It a Bit

v Here we are instantiating a std::string object on the
stack (an ordinary local variable)
§ Passing the C string "Hello, World!" to its constructor

method
§ hello is deallocated (and its destructor invoked) when main

returns

35

#include <iostream>
#include <cstdlib>
#include <string>

using namespace std;

int main(int argc, char** argv) {
string hello("Hello, World!");
cout << hello << endl;
return EXIT_SUCCESS;

}

helloworld2.cc

CSE333, Spring 2022L10: C++ Intro

Let’s Refine It a Bit

v The C++ string library also overloads the << operator
§ Defines a function (not an object method) that is invoked when

the LHS is ostream and the RHS is std::string
• http://www.cplusplus.com/reference/string/string/operator<</

36

#include <iostream>
#include <cstdlib>
#include <string>

using namespace std;

int main(int argc, char** argv) {
string hello("Hello, World!");
cout << hello << endl;
return EXIT_SUCCESS;

}

helloworld2.cc

http://www.cplusplus.com/reference/string/string/operator%3c%3c/

CSE333, Spring 2022L10: C++ Intro

String Concatenation

v The string class overloads the “+” operator
§ Creates and returns a new string that is the concatenation of the

LHS and RHS

#include <iostream>
#include <cstdlib>
#include <string>

using namespace std;

int main(int argc, char** argv) {
string hello("Hello");
hello = hello + ", World!";
cout << hello << endl;
return EXIT_SUCCESS;

}

concat.cc

37

CSE333, Spring 2022L10: C++ Intro

String Assignment

v The string class overloads the “=” operator
§ Copies the RHS and replaces the string’s contents with it

#include <iostream>
#include <cstdlib>
#include <string>

using namespace std;

int main(int argc, char** argv) {
string hello("Hello");
hello = hello + ", World!";
cout << hello << endl;
return EXIT_SUCCESS;

}

concat.cc

38

CSE333, Spring 2022L10: C++ Intro

String Manipulation

v This statement is complex!
§ First “+” creates a string that is the concatenation of hello’s

current contents and ", World!"
§ Then “=” creates a copy of the concatenation to store in hello
§ Without the syntactic sugar:

• hello.operator=(hello.operator+(", World!"));

#include <iostream>
#include <cstdlib>
#include <string>

using namespace std;

int main(int argc, char** argv) {
string hello("Hello");
hello = hello + ", World!";
cout << hello << endl;
return EXIT_SUCCESS;

}

concat.cc

39hello.operator=(hello.operator+(", World!"));

CSE333, Spring 2022L10: C++ Intro

Stream Manipulators

v iomanip defines a set of stream manipulator functions
§ Pass them to a stream to affect formatting

• http://www.cplusplus.com/reference/iomanip/
• http://www.cplusplus.com/reference/ios/

#include <iostream>
#include <cstdlib>
#include <iomanip>

using namespace std;

int main(int argc, char** argv) {
cout << "Hi! " << setw(4) << 5 << " " << 5 << endl;
cout << hex << 16 << " " << 13 << endl;
cout << dec << 16 << " " << 13 << endl;
return EXIT_SUCCESS;

}

manip.cc

40

http://www.cplusplus.com/reference/iomanip/
http://www.cplusplus.com/reference/ios/

CSE333, Spring 2022L10: C++ Intro

Stream Manipulators

v setw(x) sets the width of the next field to x
§ Only affects the next thing sent to the output stream (i.e. it is not

persistent)

#include <iostream>
#include <cstdlib>
#include <iomanip>

using namespace std;

int main(int argc, char** argv) {
cout << "Hi! " << setw(4) << 5 << " " << 5 << endl;
cout << hex << 16 << " " << 13 << endl;
cout << dec << 16 << " " << 13 << endl;
return EXIT_SUCCESS;

}

manip.cc

41

CSE333, Spring 2022L10: C++ Intro

Stream Manipulators

v hex, dec, and oct set the numerical base for integer
output to the stream
§ Stays in effect until you set the stream to another base (i.e. it is

persistent)

#include <iostream>
#include <cstdlib>
#include <iomanip>

using namespace std;

int main(int argc, char** argv) {
cout << "Hi! " << setw(4) << 5 << " " << 5 << endl;
cout << hex << 16 << " " << 13 << endl;
cout << dec << 16 << " " << 13 << endl;
return EXIT_SUCCESS;

}

manip.cc

42

CSE333, Spring 2022L10: C++ Intro

C and C++

v C is (roughly) a subset of C++
§ You can still use printf – but bad style in ordinary C++ code
§ Can mix C and C++ idioms if needed to work with existing code,

but avoid mixing if you can
• Use C++(11)

#include <cstdio>
#include <cstdlib>

int main(int argc, char** argv) {
printf("Hello from C!\n");
return EXIT_SUCCESS;

}

helloworld3.cc

43

CSE333, Spring 2022L10: C++ Intro

Reading

v std::cin is an object instance of class istream
§ Supports the >> operator for “extraction”

• Can be used in conditionals – (std::cin>>num) is true if
successful

§ Has a getline() method and methods to detect and clear
errors

#include <iostream>
#include <cstdlib>

using namespace std;

int main(int argc, char** argv) {
int num;
cout << "Type a number: ";
cin >> num;
cout << "You typed: " << num << endl;
return EXIT_SUCCESS;

}

echonum.cc

44

CSE333, Spring 2022L10: C++ Intro

Extra Exercise #1

v Write a C++ program that uses stream to:
§ Prompt the user to type 5 floats
§ Prints them out in opposite order with 4 digits of precision

46

