
CSE 333
Section 8
Client-side Networking

1

Logistics

● Exercise 15:

○ Out later today

○ Due Monday (11/21) @ 10:00am

● Exercise 16:

○ Out after lecture tomorrow

○ Due Wednesday (11/23) @ 10:00am

● Homework 3:

○ Due Tonight (1/17) @ 11:00pm

2

Computer Networking Review

3

Computer Networks: A 7-ish Layer Cake

4

Data Flow

Transmit
Data

Receive
Data

11

Computer Networks: A 7-ish Layer Cake

sending data end-to-end

routing of packets across networks

multiple computers on a local network

bit encoding at signal level
12

format/meaning of messages

Exercise 1

13

Terminology Review

● DNS:

● IP:

● TCP:

● UDP:

Translating between IP addresses and host names. (Application Layer)

Routing packets across the Internet. (Network Layer)

Reliable transport protocol on top of IP. (Transport Layer)

Unreliable transport protocol on top of IP. (Transport Layer)

14

TCP versus UDP

Transmission Control Protocol
(TCP):

● Connection-oriented Service

● Reliable and Ordered

● Flow control

User Datagram Protocol (UDP):

● “Connectionless” service

● Unreliable packet delivery

● High speed, no feedback

15

TCP guarantees reliability for things like messaging or data transfers. UDP has less overhead
since it doesn’t make those guarantees, but is often fine for streaming applications (e.g.,
YouTube or Netflix) or other applications that manage packets on their own or do not want
occasional pauses for packet retransmission or recovery.

Client-Side Networking

16

Client-Side Networking in 5 Easy* Steps!
1. Figure out what IP address and port to talk to
2. Build a socket from the client
3. Connect to the server using the client socket and server socket
4. Read and/or write using the socket
5. Close the socket connection

17
*difficulty is subjective

Step 1: Figuring out the port and IP

● Performs a DNS Lookup for a hostname

● Use “hints” to specify constraints (struct addrinfo*)

● Get back a linked list of struct addrinfo results

int getaddrinfo(const char* hostname,
const char* service,
const struct addrinfo* hints,
struct addrinfo** res);

18

Output parameter; *res is
set to the first result in LL

We will set this to nullptr
to get the default; otherwise
you can specify service/port

Hints for the lookup server/refine results

Name of host whose IP we want

struct addrinfo {
int ai_flags; // additional flags
int ai_family; // AF_INET, AF_INET6, AF_UNSPEC
int ai_socktype; // SOCK_STREAM, SOCK_DGRAM, 0
int ai_protocol; // IPPROTO_TCP, IPPROTO_UDP, 0
size_t ai_addrlen; // length of socket addr in bytes
struct sockaddr* ai_addr; // pointer to socket addr
char* ai_canonname; // canonical name
struct addrinfo* ai_next; // can have linked list of records

}

Step 1: Obtaining your server’s socket address

19

● ai_addr points to a struct sockaddr describing a socket address, can be IPv4 or IPv6

Understanding struct sockaddr*
● It’s just a pointer. To use it, we’re going to have to dereference it and cast

it to the right type (Very strange C “inheritance”)
○ It is the endpoint your connection refers to

● Convert to a struct sockaddr_storage
○ Read the sa_family to determine whether it is IPv4 or IPv6
○ IPv4: AF_INET (macro) → cast to struct sockaddr_in
○ IPv6: AF_INET6 (macro) → cast to struct sockaddr_in6

20

Understanding Socket Addresses

fam port addr zero

fam port flow addr scope

struct sockaddr_in (IPv4)

struct sockaddr_in6 (IPv6)

struct sockaddr_storage

struct sockaddr (pointer to this struct is used as parameter type in system calls)

fam ????

16

28

Big enough to hold either

....

21

fam

Sockets (Berkeley Sockets)
● Defines a local endpoint communication between server and client

○ Similar to a file descriptor for network communication
○ Built on various operating system calls

● Each socket is associated with a port number (uint16_t) and an IP
address
○ Both port and address are stored in network byte order (big endian)
○ ai_family will help you to determine what is stored for your socket!

22

Steps 2 and 3: Building a Connection

23

2. Create a client socket to manage (returns an integer file descriptor, just like
POSIX open)

// returns file descriptor on success, -1 on failure (errno set)
int socket(int domain, // AF_INET, AF_INET6, etc.

int type, // SOCK_STREAM, SOCK_DGRAM, etc.
int protocol); // just put 0 (network abstraction)

3. Use that created client socket to connect to the server socket
// Connects to the server
// returns 0 on success, -1 on failure (errno set)
int connect(int sockfd, // socket file descriptor

struct sockaddr *serv_addr, // socket addr of server
socklen_t addrlen); // size of serv_addr

Usually from getaddrinfo!

Steps 4 and 5: Using your Connection

24

// returns amount read, 0 for EOF, -1 on failure (errno set)
ssize_t read(int fd, void *buf, size_t count);

// returns amount written, -1 on failure (errno set)
ssize_t write(int fd, void *buf, size_t count);

// returns 0 for success, -1 on failure (errno set)
int close(int fd);

● Same POSIX methods we used for file I/O!
(so they require the same error checking...)

Helpful References

1. Figure out what IP address and port to talk to
• dnsresolve.cc

2. Build a socket from the client
• connect.cc

3. Connect to the server using the client socket and server socket
• sendreceive.cc

4. Read and/or write using the socket
• sendreceive.cc

5. Close the socket connection

25

*Note: sendreceive.cc uses connect.cc’s function LookUpName() which hides implementation of
getaddrinfo(). They are under the same directory and can be found here. The following links are
implementations of each step and can be helpful to read side-by-side with the slides. If there are
any confusions about a function feel free to make a post on edStem or look at the man page

https://courses.cs.washington.edu/courses/cse333/22sp/lectures/21-network-dns-code/dnsresolve.cc.html
https://courses.cs.washington.edu/courses/cse333/22sp/lectures/22-network-client-code/connect.cc.html
https://courses.cs.washington.edu/courses/cse333/22sp/lectures/22-network-client-code/sendreceive.cc.html
https://courses.cs.washington.edu/courses/cse333/22sp/lectures/22-network-client-code/sendreceive.cc.html
https://courses.cs.washington.edu/courses/cse333/22sp/lectures/22-network-client-code/

Exercise 2

27

28

Input param

Output param

TODO: Fill in this chart with the steps
described in the slides on how to
interact with a server as a client!

1. getaddrinfo()

● Performs a DNS Lookup for a hostname

● Use “hints” to specify constraints (struct addrinfo*)

● Get back a linked list of struct addrinfo results

int getaddrinfo(const char* hostname,
const char* service,
const struct addrinfo* hints,
struct addrinfo** res);

29

1. getaddrinfo() - Interpreting Results
struct addrinfo {

int ai_family; // AF_INET, AF_INET6, AF_UNSPEC
struct sockaddr* ai_addr; // pointer to socket addr
...

};

31

● These records are dynamically allocated; you should pass the head of the linked list

to freeaddrinfo()

● The field ai_family describes if it is IPv4 or IPv6

● ai_addr points to a struct sockaddr describing the socket address

1. getaddrinfo() - Interpreting Results

With a struct sockaddr*:

● The field sa_family describes if it is IPv4 or IPv6

● Cast to struct sockaddr_in* (v4)or struct sockaddr_in6* (v6)

to access/modify specific fields

● Store results in a struct sockaddr_storage to have a space big enough for

either

32

2. Build client side socket
int socket(int domain, // AF_INET, AF_INET6

int type, // SOCK_STREAM (for TCP)
int protocol); // 0 for the default

34

● This gives us an unbound socket that’s not connected to anywhere in particular
● Returns a socket file descriptor (we can use it everywhere we can use any other file descriptor

as well as in socket specific system calls)

socket

2. Build client side socket

35

socket domain

struct
sockaddr_storage*

3. connect()

int connect(int socket, // socket fd
const struct sockaddr *addr, // address to connect to
socklen_t addr_len); // length of *addr

36

● This takes our unbound socket and connects it to the host at addr
● Returns 0 on success, -1 on error with errno set appropriately
● After this call completes, we can actually use our socket for communication!

3. connect()

● Connects an available socket to a specified address

● Returns 0 on success, -1 on failure

int connect(int socket, // from 1
const struct sockaddr *addr, // from 2
socklen_t addr_len); // size of serv_addr

Cast sockaddr_storage* to sockaddr*!

38

4. read/write and 5. close
● Thanks to the file descriptor abstraction, use as normal!
● read from and write to a buffer, the OS will take care of

sending/receiving data across the network
● Make sure to close the fd afterward

39

40

netcat

41

