CSE 333 Section 5 - C++ Classes, Dynamic Memory

Welcome back to section! We’re glad that you’re here :)

Quick Class Review:
What do the following modifiers mean?

public:

protected:

private:

What is the default access modifier for a struct in C++?

Constructors, Destructors, what is going on?

Constructor: Can define any number as long as they have different parameters.
Constructs a new instance of the class. The default constructor takes no arguments.
Copy Constructor: Creates a new instance of the class based on another instance (it's
the constructor that takes a reference to an object of the same class). Automatically
invoked when passing or returning a non-reference object to/from a function.
Assignment Operator: Assigns the values of the right-hand-expression to the left-hand-
side instance.

Destructor: Cleans up the class instance, i.e. free dynamically allocated memory used
by this class instance.

What happens if you don’t define a copy constructor? Or an assignment operator? Or a
destructor? Why might this be bad?

How can you disable the copy constructor/assignment operator/destructor?

When is the initialization list of a constructor run, and in what order are data members
initialized?

What happens if data members are not included in the initialization list?

Exercise 1) Give the output of the following program:
#include <iostream>
using namespace std;
class Int {

public:
Int() { ival = 17; cout << "default(" << ival << ")" << endl; }
Int (int n) { ival = n; cout << "ctor (" << ival << ")" << endl; }
Int (const Inté& n) {
ival = n.ival ;
cout << "cctor(" << ival << ")" << endl;
}
~Int () { cout << "dtor(" << ival << ")" << endl; }

int get() int {
cout << "get (" << ival << ")" << endl;
return ival ;

}

void set (int n) {

ival = n;
cout << "set (" << ival << ")" << endl;
}
private:

int ival ;

b

int main(int argc, char** argv) {
Int p;
Int q(p);
Int r(5);
Int s = r;
g.set(p.get()+1);
return EXIT SUCCESS;

Dynamically-Allocated Memory: New and Delete
In C++, memory can be heap-allocated using the keywords “new” and “delete”. You can think
of these like malloc () and free () with some key differences:
e Unlikemalloc () and free (), new and delete are operators, not functions.
e new and delete are type-safe, allocating and deleting items of specific types, not
untyped collections of bytes.
e The implementation of allocating heap space may vary between malloc and new (but
client code cannot know if this is the case or not).

New: Allocates the type on the heap, calling the specified constructor if it is a class type.
Syntax for arrays is “new type [num]”. Returns a pointer to the type.

Delete: Deallocates the type from the heap, running the destructor before reclaiming the space
if the item being deallocated is a class type. For anything you called “new” on, you should at
some point call “delete” to clean it up. Syntax for arrays is “delete[] name”.

Just like baking soda and vinegar, you should not mix malloc/free with new/delete.

Exercise 2) ldentify (and fix) any issues with this Heaplint class.

class HeapInt {
public:

HeapInt () { x = new int(5); }
private:

int* x ;

b

int main(int argc, char** argv) {
HeapInt** heap int ptr = new HeapInt*;
HeapInt* heap int = new HeapInt();
*heap int ptr = heap int;
delete heap int ptr;
return EXIT SUCCESS;

}

Assuming an instance of HeapInt takes up 8 bytes (like a C-struct with just int* x), how
many bytes of memory are leaked by this program (if any)? How would you fix the memory
leaks?

Hint: keep track of the types. Which things are pointers? Pointers to pointers? Etc.?

Exercise 3) Identify any errors with the following code. Then fix them!

class IntArr {

public:
IntArr () { arr = new int([5]; }
~IntArr () { delete [] arr ; }
private:

int* arr ;

b

int main(int argc, char** argv) {
IntArr* i arl = new IntArr;
IntArr* i ar2 = new IntArr(*i arl);
delete 1 _arl;
delete 1 _ar2;
return EXIT SUCCESS;

Draw a memory diagram. What happens when i _ar1 gets deleted?

Bonus 1) Give the output of the following code

#include <iostream>

using namespace std;

class Foo {
public:
Foo ()
Foo (int x)
~Foo ()
}i

{ cout <<
{ cout <<
{ cout <<

class Bar {
public:

Bar (int x) { other
~Bar () { delete
private:

Foo* other ;

b

class Baz {
public:
Baz (int z)
~Baz ()
private:
Foo foo ;
Bar bar ;

b

bar (z)

int main () {
Baz (1);
cout << endl;

d'i)

= new Foo (X):;

other ;

{ cout <<
{ cout <<

|r|;

|a|;

cout <<
cout <<

// to flush the buffer

|g|;
|e|;

Bonus 2) Class usage. Consider the following classes:

class IntArrayList
public:
IntArrayList ()
array (new int[MAXSIZE]), len (0), maxsize (MAXSIZE) { }
IntArrayList (const int* const arr, size t len)
len (len), maxsize (len *2) {
array = new int[maxsize];
memcpy (array , arr, len * sizeof (int));

}

IntArraylList (const IntArrayListé& rhs) {

len = rhs.len ;
maxsize = rhs.maxsize ;
array = new int[maxsize];

memcpy (array , rhs.array , maxsize * sizeof(int));
}
// synthesized destructor
// synthesized assignment operator

private:
int* array ;
size t len ;
size t maxsize ;

b

class Wrap {

public:

Wrap() : p_(nullptr) {}

Wrap (IntArrayList* p) : p (p) { *p_ = *p; }
IntArrayList* p() const { return p ; }
private:

IntArrayList* p ;
bi

struct List {
IntArraylList v;
}i

Here’s an example program using these classes:

int main(int argc, char** argv) {
IntArraylList a;
IntArraylList* b = new IntArrayList();
struct List 1 { a };
struct List m { *b };
Wrap w(b);
delete b;
return EXIT SUCCESS;

Draw a memory diagram of the program:

How does the above program leak memory?

Fix the issue in the code above. You may write the solution here.

Bonus 3) Past Midterm Question

Consider the following (very unusual) C++ program which does compile and execute
successfully. Write the output produced when it is executed.

Hints: Member variables are initialized in declaration order. Destruction order is the reverse of
construction order. The body of a constructor runs after its initializer list.

#include <iostream>
using namespace std;

class foo {

}
}
delete foo ; }

}

}

public:
foo () { cout << "p";
foo (int 1) { cout << "a";
foo(int i, int 7j) { cout << "h";
ints)
~foo () { cout << "s";
}i
class bar {
public:
bar(): foo (new foo()) { cout << "g";
bar (int i): foo (new foo(i)) { cout << "p";
~bar () { cout << "e";
private:
foo* foo ;
foo otherfoo ;
}i
class baz {
public:
baz (int a, int b, int c) : bar (a), foo (b,c)
{ cout << "i";
ints)
~baz () { cout << "n";
private:

foo foo ;
bar bar ;

}s

int main () {
baz b(l,2,3);
return EXIT SUCCESS;

//
//
//

//

//
//
//

//

//

ctor
ctor
ctor

dtor

ctor
ctor
dtor

ctor

dtor

(1 int)

(1 int)

(3

