
CSE 333
Section 5
C++ Classes and Dynamic Memory



Logistics

● Homework 2
○ Due TONIGHT! (10/27) @ 11:00pm

● Exercise 11
○ Out Friday
○ Due Monday (10/31) @ 10:00am



Review Questions
● What do the following access modifiers mean?

● What is the default access modifier for a struct in C++?

public:

protected:

private:

friend

Member is accessible by anyone

Member is accessible by this class and any derived classes

Member is only accessible by this class

Allows access of private/protected members to foreign functions and/or 
classes where this modifier is present (applied to individual functions/classes, 
not a regular access modifier like public:/private:/protected: )

A struct can be thought of as a class where all members are default public instead of 
default private. In C++, it is also possible to give member functions (such as a constructor) 
to a struct



Best Practices: Member/Non-Member Functions
Member Non-member

● Best used when you need to modify the 
object (reassigning and accessing data 
members)

● “Core” class functionality

● Allows access to private functions/data 
members

● Function call: obj1.Function(obj2);
● Operator Overloads: obj1 *= obj2;

● Best used for non-modifying and/or 
commutative functions. 

● When operating with the class on the right-
hand side

● Does NOT give access to private 
functions/data members by default

● Only use friend keyword if NEEDED
○ friend allows for non-member private 

access

● Function call: Func(obj1, obj2);
● Operator Overloads: obj1 * obj2;



Constructors, Destructors



Destructor (dtor): Cleans up the class instance. Deletes dynamically allocated memory (if any).

Constructor (ctor): Can define any number as long as they have different parameters. Constructs 
a new instance of the class.

Copy Constructor (cctor): Creates a new instance based on another instance (must take a 
reference!). Invoked when passing/returning a non-reference object to/from a function.

class Int {
public:

. . .

Int() { ival_ = 17; cout << "default(" << ival_ << ")" << endl; }
Int(int n) { ival_ = n; cout << "ctor(" << ival_ << ")" << endl; }
Int(const Int& n) {

ival_ = n.ival_;
cout << "cctor(" << ival_ << ")" << endl;

}
~Int() { cout << "dtor(" << ival_ << ")" << endl; }

Constructors Revisited



Initialization Lists

● When is the initialization list of a constructor run, and in what order are data 
members initialized?

● What happens if data members are not included in the initialization list?

The initialization list is run before the body of the ctor, and data members are 
initialized in the order that they are defined in the class, not by initialization 
list ordering.

Data members that don’t appear in the initialization list are default 
initialized/constructed before ctor body is executed.

MyInt(int x) { ival_ = x; } => MyInt(int x) : ival(x) { }



Destructors Review

● When are destructors invoked? In what order are they invoked when multiple 
objects are getting destructed?

● What happens when a destructor actually executes? (Hint: what happens if a dtor 
body doesn’t destruct all of its members?)

● An object’s destructor is run when it falls out of scope, or when the 
delete keyword is used on heap allocated objects constructed with 
new

● Invoked in reverse order of construction

● Destructors are run in reverse order of construction: (1) run destructor 
body (2) destruct remaining members in reverse order of declaration



Exercise 1



Exercise 1: Constructors and Destructors

int main(int argc, char** argv) { 
Int p;
Int q(p);
Int r(5);
Int s = r;
q.set(p.get()+1);
return EXIT_SUCCESS;

}

p

ival_ = 17

q

ival_ = 5

r

ival_ = 17

ival_ = 18Output:
default(17)
cctor(17)
ctor(5)

get(17)
set(18)
dtor(5)

dtor(18)
dtor(17)

ival_ = 5

s

cctor(5)

dtor(5)



Design Considerations

● What happens if you don’t define a copy constructor? Or an assignment operator? 
Or a destructor? Why might this be bad?

● How can you disable the copy constructor/assignment operator/destructor?

● In C++, if you don’t define any of these, one will be synthesized for you
● The synthesized copy constructor does a shallow copy of all fields
● The synthesized assignment operator does a shallow copy of all fields
● The synthesized destructor calls the default destructors of any fields that 

have them

Set their prototypes equal to the keyword “delete”: ~SomeClass() = delete;



C++ Dynamic Memory



new and delete Operators

new: Allocates the type on the heap, calling specified constructor if it is a class type

Syntax:

type* ptr = new type;

type* heap_arr = new type[num];

delete: Deallocates the type from the heap, calling the destructor if it is a class type. 
For anything you called new on, you should at some point call delete to clean it up

Syntax:

delete ptr;

delete[] heap_arr;

DO NOT MIX C HEAP FUNCTIONS 
WITH C++ HEAP FUNCTIONS



Exercise 2



Exercise 2: HeapInt
class HeapInt {
public:
HeapInt() { x_ = new int(5); }

private:
int* x_;

};

int main(int argc, char** argv) {
HeapInt** heap_int_ptr = new HeapInt*;
HeapInt* heap_int = new HeapInt();
*heap_int_ptr = heap_int;
delete heap_int_ptr;
return EXIT_SUCCESS;

}

Stack Heap



class HeapInt {
public:
HeapInt() { x_ = new int(5); }

private:
int* x_;

};

int main(int argc, char** argv) {
HeapInt** heap_int_ptr = new HeapInt*;
HeapInt* heap_int = new HeapInt();
*heap_int_ptr = heap_int;
delete heap_int_ptr;
return EXIT_SUCCESS;

}

???

Exercise 2: HeapInt Stack Heap

0x602010 0x602030

0x602030

heap_int

heap_int_ptr

0x602050x_

5How can we fix this leak?
delete heap_int;
~HeapInt() { delete x_; }



Exercise 3



Exercise 3: IntArr Stack Heap

class IntArr {
public:
IntArr()  { arr_ = new int[5]; }
~IntArr() { delete [] arr_; }

private:
int* arr_;

};

int main(int argc, char** argv) {
IntArr* i_ar1 = new IntArr;
IntArr* i_ar2 = new IntArr(*i_ar1);
delete i_ar1;
delete i_ar2;
return EXIT_SUCCESS;

}



Exercise 3: IntArr Stack

Heap

class IntArr {
public:
IntArr()  { arr_ = new int[5]; }
~IntArr() { delete [] arr_; }

private:
int* arr_;

};

int main(int argc, char** argv) {
IntArr* i_ar1 = new IntArr;
IntArr* i_ar2 = new IntArr(*i_ar1);
delete i_ar1;
delete i_ar2;
return EXIT_SUCCESS;

}

0x...i_ar20x...i_ar1

0x...arr_ 0x...arr_

Invalid delete: BAD

as if!


