
CSE333, Fall 2022L07: Build Tools

Build Tools (make)
CSE 333 Fall 2022 Section 4

Instructor: Hal Perkins

Teaching Assistants:
Nour Ayad Frank Chen Nick Durand
Dylan Hartono Humza Lala Kenzie Mihardja
Bennedict Soesanto Chanh Truong JusBn Tysdal
Tanay Vakharia Timmy Yang

CSE333, Fall 2022L07: Build Tools

Talk Example

❖ We have a small program that is split into multiple tiny
modules (code on the web linked to this lecture):

❖ Modules:
▪ speak.h/speak.c: write a string to stdout
▪ shout.h/shout.c: write a string to stdout LOUDLY
▪ main.c: client program

❖ Demo: build this program incrementally, and recompile
only necessary parts when something changes

2

speak.cspeak.h shout.cshout.hmain.c

CSE333, Fall 2022L07: Build Tools

Building So3ware

❖ Programmers spend a lot of @me “building”
▪ Crea=ng programs from source code
▪ Both programs that they write and other people write

❖ Programmers like to automate repe@@ve tasks
▪ Repe==ve: gcc -Wall -g -std=c11 -o widget foo.c bar.c baz.c

• Retype this every Bme: 😭

• Use up-arrow or history: 😐 (sBll retype aMer logout)

• Have an alias or bash script: 🙂

• Have a Makefile: 😊 (you’re ahead of us)

3

CSE333, Fall 2022L07: Build Tools

make

❖ make is a classic program for controlling what gets
(re)compiled and how
▪ Many other such programs exist (e.g. ant, maven, IDE “projects”)

❖ make has tons of fancy features, but only two basic ideas:
1) Scripts for executing commands
2) Dependencies for avoiding unnecessary work

❖ Why not just use scripts ?
1) You don’t want to recompile everything every time you change

something (especially if you have 105-107 files of source code)
2) Make is smarter than just using scripts. Knows what to rebuild.

4

CSE333, Fall 2022L07: Build Tools

Recompila8on Management

❖

5

CSE333, Fall 2022L07: Build Tools

Theory Applied to Our Example
❖ What are the dependencies between built and source files?
❖ What needs to be rebuilt if something changes?

6

speak.cspeak.h shout.cshout.hmain.c

speak.o shout.omain.o

talk

CSE333, Fall 2022L07: Build Tools

make Basics

❖ A makefile contains a bunch of triples:

▪ Colon aTer target is required
▪ Command lines must start with a TAB, NOT SPACES
▪ Mul=ple commands for same target are executed in order

• Can split commands over mulBple lines by ending lines with ‘\’

❖ Example:

7

foo.o: foo.c foo.h bar.h
gcc -Wall -o foo.o -c foo.c

target: sources
command

CSE333, Fall 2022L07: Build Tools

Using make

❖ Defaults:
▪ If no -f specified, use a file named Makefile
▪ If no target specified, will use the first one in the file
▪ Will interpret commands in your default shell

• Set SHELL variable in makefile to ensure

❖ Target execu@on:
▪ Check each source in the source list:

• If the source is a target in the Makefile, then process it recursively
• If some source does not exist, then error
• If any source is newer than the target (or target does not exist), run
command (presumably to update the target)

8

bash% make -f <makefileName> target

CSE333, Fall 2022L07: Build Tools

Makefile for our example + Demo
default target
talk: main.o speak.o shout.o

gcc -Wall -g -std=c11 -o talk main.o speak.o

shout.o

individual source files
speak.o: speak.c speak.h

gcc -Wall -g -std=c11 -c speak.c

shout.o: shout.c shout.h speak.h
gcc -Wall -g -std=c11 -c shout.c

main.o: main.c speak.h shout.h
gcc -Wall -g -std=c11 -c main.c

phoney target - delete built files (including OS X debug files)
clean:

rm -rf talk *.o *~ talk.dSYM
9

CSE333, Fall 2022L07: Build Tools

make Variables

❖ You can define variables in a makefile:
▪ All values are strings of text, no “types”
▪ Variable names are case-sensi=ve and can’t contain ‘:’, ‘#’, ‘=’, or

whitespace

❖ Example:

❖ Advantages:
▪ Easy to change things (especially in mul=ple commands)
▪ Can also specify on the command line (CC=clang FLAGS=-g)

10

CC = gcc
CFLAGS = -Wall -std=c11
foo.o: foo.c foo.h bar.h

$(CC) $(CFLAGS) -o foo.o -c foo.c

CSE333, Fall 2022L07: Build Tools

More Variables

❖ It’s common to use variables to hold list of filenames:

❖ clean is a convention
▪ Remove generated files to “start over” from just the source
▪ It’s “funny” because the target doesn’t exist and there are no

sources, but it works because:
• The target doesn’t exist, so it must be “remade” by running the

command
• These “phony” targets have several uses, such as “all”…

11

OBJFILES = foo.o bar.o baz.o
widget: $(OBJFILES)

gcc -o widget $(OBJFILES)
clean:

rm $(OBJFILES) widget *~

CSE333, Fall 2022L07: Build Tools

Revenge of the Funny Characters

❖ Special variables:
▪ $@ for target name
▪ $^ for all sources
▪ $< for leT-most source
▪ Lots more! – see the documenta=on

❖ Examples:

12

CC and CFLAGS defined above
widget: foo.o bar.o

$(CC) $(CFLAGS) -o $@ $^
foo.o: foo.c foo.h bar.h

$(CC) $(CFLAGS) -c $<

