
CSE 333 22au
Section 2
Debugging and Structs

Checking In & Logistics
Any questions, comments, or
concerns?
● Exercises going ok?
● Lectures making sense?

2

● Exercise 3:
○ Due Friday @ 10:00am (10/07)

● Homework 1:
○ Due Thursday @ 11:00pm (10/13)
○ Start Early!

Debugging Tools

3

Debugging

● ✨ Debugging is a skill that you will need throughout your career! ✨

● The 333 projects are big with lots of potential for bugs
○ Learning to use the debugging tools will make your life a lot easier
○ Course staff will help you learn the tools in office hours, too

● Debugging tool output can be scary at first, but extremely useful once you know
how to parse it

4

Debugging Strategies

Many debugging strategies exist but here’s a simple 5 step process!

1. Observation: Something is wrong with your program!
2. Hypothesis: What do you think is going wrong?
3. Experiment: Use debuggers and other tools to verify the problem
4. Analyze: Identify and implement a fix to the problem.
5. Repeat steps 1-4 until bug free!

5

Key debugging skills to master
1. Stop at “interesting” places
○ Debug after a crash or segfault
○ Use breakpoints to stop during execution

2. Look around when stopped
○ Print values of variables
○ Look at source code
○ Look up/down call chain

3. Resume execution
○ Incrementally, step at a time
○ Until next breakpoint
○ Until finished

6

333 Debugging Options
● gdb (GNU Debugger) is a general-purpose debugging tool

○ Stops at breakpoints and program crashes
○ Lots of helpful features for tracing code, checking current expression values, and

examining memory

● valgrind specifically check for memory errors
○ Great for catching non-crashing odd behavior (e.g., using uninitialized values, memory

leaks on the heap)
○ If your code uses malloc, should use --leak-check=full option

7

Basic Functions in GDB
● Setting breakpoints:

○ break <filename>:<line#>
● Advancing

○ step – into functions
○ next – over functions
○ continue – to next break

8

● Reading Values
○ print – evaluate expression once
○ display – keep evaluating expression

● Examining memory
○ x – dereference provided address
○ bt – backtracing

● Reference Card:
https://courses.cs.washington.edu/courses/cse333/22au/resources/gdb-refcard.pdf

https://courses.cs.washington.edu/courses/cse333/22sp/resources/gdb-refcard.pdf

Common Errors

● Misusing Functions: Read documentation (online, through man pages, or the .h
files for your homework) for function parameters and function purpose
○ Oftentimes, this leads to unexpected results!

● Segmentation Fault: Dereferencing an uninitialized pointer, NULL, a previously-
freed pointer, or many other things.
○ GDB automatically halts execution when SIGSEGV is received, useful for debugging

● Memory “Errors”: Many possible errors, commonly use of uninitialized memory
or “memory leaks” (data allocated on heap that does not get free’d).
○ Use valgrind to help catch memory errors!

9

Trying to Run reverse.c

We have a program reverse.c that accepts a string from the user and reverses it!

But it has a few problems… let’s take a look!

10

Exercise 1

11

Complete the Memory Diagram
int main() {

char line[MAX_STR];
char* rev_line;

printf("Please enter a string: ");
fgets(line, MAX_STR, stdin);
rev_line = reverse(line);
.
.
.

12*unreached code omitted for space

The Stack

main()

reverse()

char line[]

?char* rev_line

'c''s''e''3''3''3' '\0'

char* s

Complete the Memory Diagram
char* reverse(char* s) {

char* result = NULL;
int L, R;
char ch;

strcpy(result, s);
.
.
.

13*unreached code omitted for space

The Stack

reverse()

NULL ?

?

?

main()

?char* rev_line

'c''s''e''3''3''3' '\0'

char* s

char* result

char ch

int L

int R

char line[]

The Stack

Completed Memory Diagram

14

main()

reverse()

char line[]

'c' 's' 'e' '3' '3' '3' '\0'

?char* rev_line

char* s

char* result NULL

?char ch

?

?int L

int R

Exercise 2 & 3

15

Fix 1: Segfault
● Tool help: run in gdb to find segfault, man for strncpy,bt to find segfault

occurence

● Old version:
result = NULL;
strncpy(result, word, strsize);

● New version:
result = (char*) malloc(strsize);
strncpy(result, word, strsize);

16

Fix 2: Doesn’t reverse string
● Tool help: run in gdb, break on reverse(), step through code, print /s

word at end of function (prints as string)

● Old version:
char ch;
int L = 0, R = strlen(result);

● New version:
char ch;
int L = 0, R = strlen(result) - 1;

17

Fix 3: Memory leaks
● Tool help: run under valgrind, identify un-freed allocation line numbers

● Old version:
char* reverse(char* s) { ...
return result; }

● New version:
char* reverse(char* s) { ...
return result; }
At end of main: free(rev_line);

18

Style Fixes
● Tool help: None? Lecture slides! Google C++ Style Guide!

● malloc error checking:
result = (char*) malloc(strsize);
if (result == NULL) {

// sample error checking. Read the spec on the requirements
// for handling malloc!
exit(EXIT_FAILURE);

}

● Remember to do this for the sake of code style! Malloc errors are rare, but we still check for
failure to keep our code consistent

19

Structs and Typedef Review

20

Defining Structs
● To define a struct, we use the struct statement, which typically has a name (a

tag) and must have one or more data members
○ This defines a new data type!

21

struct simplestring_st {
char* word;
int length;

};
struct simplestring_st my_word;

Typedef
● The C Programming language provides the keyword typedef, which defines an

alias (alternate name) for an existing data type
○ This can be used in combination with a struct statement

typedef struct simplestring_st {
char* word;
int length;

} SimpleString;
SimpleString my_word;

struct simplestring_st {
char* word;
int length;

};
typedef struct simplestring_st SimpleString;
SimpleString my_word;

22

Structs and Memory Diagrams
● struct instance is a box, with individual boxes for fields inside of it,

labelled with field names
○ Even though we know that field ordering is guaranteed, we can be loose with

where we place the fields in our diagram

23

typedef struct simplestring_st {
char* word;
int length;

} SimpleString;
SimpleString my_word; ?

my_word
length

word
?

Structs and Pointers
● “.” to access field from struct instance
● “->” to access field from struct pointer

char cse333[] = "cse333";
SimpleString cse333_ss;
SimpleString* cse333_ptr = &cse333_ss;

cse333_count.word = cse333_ss;
cse333_ptr->length = strlen(cse333);

6
cse333_str

length

word

'c' 's' 'e' '3' '3' '3' '\0'cse333

cse333_ptr

24

typedef struct simplestring_st {
char* word;
int length;

} SimpleString;

Passing Structs as Parameters

● Assignment copies over all of the field values
○ Unlike reference copying in Java

● Structs are pass-by-copy (as arguments and return values)
○ Can imitate pass-by-reference by passing pointer to struct instance

instead

25

Exercise 4

26

Complete the Memory Diagram

int main(int argc, char* argv[]) {
char comp[] = "computer";
SimpleString ss = {comp, strlen(comp)};
SimpleString* ss_ptr = &ss;

printf("1. %s, %d\n", ss_ptr->word,
ss_ptr->length);

...
}

Note: boxes with a function
name above are local
variables on the stack

27

Console output

1. computer, 8

8
ss

length

word

'c' 'o' 'm' 'p' 'u' 't' 'e' 'r' '\0'comp

ss_ptr

main

length

word

The Heap

8
ss

length

word

'c' 'o' 'm' 'p' 'u' 't' 'e' 'r' '\0'comp

ss_ptr

main

// continued main code
char cse[] = "cse333";
InitWord(cse, ss_ptr);
printf("2. %s, %d\n", ss_ptr->word,

ss_ptr->length);
...

}

void InitWord(char* word, SimpleString* dest) {
dest = (SimpleString*)

malloc(sizeof(SimpleString));
dest->length = strlen(word);
dest->word = (char*) malloc(sizeof(char) *

(dest->length + 1));
strncpy(dest->word, word, dest->length + 1);

}

?InitWord

dest

28

Console output

1. computer, 8
2. computer, 8

word

'c' 's' 'e' '3' '3' '3' '\0'cse

6

'c' 's' 'e' '3' '3' '3' '\0'

The Heap

ss
length

word

'c' 'o' 'm' 'p' 'u' 't' 'e' 'r' '\0'comp

ss_ptr

main

8

InitWord

length

word

6

The Stack

'c' 's' 'e' '3' '3' '3' '\0'

'c' 's' 'e' '3' '3' '3' '\0'

new_word

ss_ptr

cse

Exercise 5 (Bonus)

30

Exercise 5

● InitWord doesn’t initialize a SimpleString properly… how can we fix that?
● If we can’t edit the original pointer… modify a pointer to the pointer in main!

31

void InitWord(char* word, SimpleString** dest) {
dest = (SimpleString) malloc(sizeof(SimpleString));

(*dest)->length = strlen(word);
(*dest)->word = (char*) malloc(sizeof(char) * ((*dest)->length + 1));

strncpy((*dest)->word, word, (*dest)->length + 1);
}

