
CSE 333 22au
Section 2
Debugging and Structs



Checking In & Logistics
Any questions, comments, or 
concerns?
● Exercises going ok?
● Lectures making sense?
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● Exercise 3:
○ Due Friday @ 10:00am (10/07)

● Homework 1:
○ Due Thursday @ 11:00pm (10/13)
○ Start Early!



Debugging Tools
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Debugging

● ✨ Debugging is a skill that you will need throughout your career! ✨

● The 333 projects are big with lots of potential for bugs
○ Learning to use the debugging tools will make your life a lot easier
○ Course staff will help you learn the tools in office hours, too

● Debugging tool output can be scary at first, but extremely useful once you know 
how to parse it
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Debugging Strategies

Many debugging strategies exist but here’s a simple 5 step process!

1. Observation: Something is wrong with your program!
2. Hypothesis: What do you think is going wrong?
3. Experiment: Use debuggers and other tools to verify the problem
4. Analyze: Identify and implement a fix to the problem.
5. Repeat steps 1-4 until bug free!
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Key debugging skills to master
1. Stop at “interesting” places
○ Debug after a crash or segfault
○ Use breakpoints to stop during execution

2. Look around when stopped
○ Print values of variables
○ Look at source code
○ Look up/down call chain 

3. Resume execution
○ Incrementally, step at a time
○ Until next breakpoint
○ Until finished
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333 Debugging Options
● gdb (GNU Debugger) is a general-purpose debugging tool

○ Stops at breakpoints and program crashes
○ Lots of helpful features for tracing code, checking current expression values, and 

examining memory

● valgrind specifically check for memory errors
○ Great for catching non-crashing odd behavior (e.g., using uninitialized values, memory 

leaks on the heap)
○ If your code uses malloc, should use --leak-check=full option
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Basic Functions in GDB
● Setting breakpoints: 

○ break <filename>:<line#>
● Advancing

○ step – into functions
○ next – over functions
○ continue – to next break
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● Reading Values
○ print – evaluate expression once
○ display – keep evaluating expression

● Examining memory
○ x – dereference provided address
○ bt – backtracing 

● Reference Card: 
https://courses.cs.washington.edu/courses/cse333/22au/resources/gdb-refcard.pdf

https://courses.cs.washington.edu/courses/cse333/22sp/resources/gdb-refcard.pdf


Common Errors

● Misusing Functions: Read documentation (online, through man pages, or the .h
files for your homework) for function parameters and function purpose
○ Oftentimes, this leads to unexpected results!

● Segmentation Fault: Dereferencing an uninitialized pointer, NULL, a previously-
freed pointer, or many other things.
○ GDB automatically halts execution when SIGSEGV is received, useful for debugging

● Memory “Errors”: Many possible errors, commonly use of uninitialized memory 
or “memory leaks” (data allocated on heap that does not get free’d).
○ Use valgrind to help catch memory errors!
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Trying to Run reverse.c

We have a program reverse.c that accepts a string from the user and reverses it!

But it has a few problems… let’s take a look!
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Exercise 1
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Complete the Memory Diagram
int main() {

char line[MAX_STR];
char* rev_line;

printf("Please enter a string: ");
fgets(line, MAX_STR, stdin);
rev_line = reverse(line);
.
.
.

12*unreached code omitted for space

The Stack

main()

reverse()

char line[]

?char* rev_line

'c''s''e''3''3''3' '\0'

char* s



Complete the Memory Diagram
char* reverse(char* s) {

char* result = NULL;
int L, R;
char ch;

strcpy(result, s);
.
.
.

13*unreached code omitted for space

The Stack

reverse()

NULL ?

?

?

main()

?char* rev_line

'c''s''e''3''3''3' '\0'

char* s

char* result

char ch

int L

int R

char line[]



The Stack

Completed Memory Diagram
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main()

reverse()

char line[]

'c' 's' 'e' '3' '3' '3' '\0'

?char* rev_line

char* s

char* result NULL

?char ch

?

?int L

int R



Exercise 2 & 3
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Fix 1:  Segfault
● Tool help:  run in gdb to find segfault, man for strncpy,bt to find segfault 

occurence

● Old version:
result = NULL;
strncpy(result, word, strsize);

● New version:
result = (char*) malloc(strsize);
strncpy(result, word, strsize);
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Fix 2:  Doesn’t reverse string
● Tool help:  run in gdb, break on reverse(), step through code, print /s 

word at end of function (prints as string)

● Old version:
char ch;
int L = 0, R = strlen(result);

● New version:
char ch;
int L = 0, R = strlen(result) - 1;
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Fix 3:  Memory leaks
● Tool help: run under valgrind, identify un-freed allocation line numbers

● Old version:
char* reverse(char* s) { ...
return result; }

● New version:
char* reverse(char* s) { ...
return result; }
At end of main:   free(rev_line);
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Style Fixes
● Tool help:  None?  Lecture slides!  Google C++ Style Guide!

● malloc error checking:
result = (char*) malloc(strsize);
if (result == NULL) {

// sample error checking. Read the spec on the requirements
// for handling malloc!
exit(EXIT_FAILURE);

}

● Remember to do this for the sake of code style! Malloc errors are rare, but we still check for 
failure to keep our code consistent
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Structs and Typedef Review
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Defining Structs
● To define a struct, we use the struct statement, which typically has a name (a 

tag) and must have one or more data members
○ This defines a new data type!
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struct simplestring_st {
char* word;
int length;

};
struct simplestring_st my_word;



Typedef
● The C Programming language provides the keyword typedef, which defines an 

alias (alternate name) for an existing data type
○ This can be used in combination with a struct statement

typedef struct simplestring_st {
char* word;
int length;

} SimpleString;
SimpleString my_word;

struct simplestring_st {
char* word;
int length;

};
typedef struct simplestring_st SimpleString;
SimpleString my_word;
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Structs and Memory Diagrams
● struct instance is a box, with individual boxes for fields inside of it, 

labelled with field names
○ Even though we know that field ordering is guaranteed, we can be loose with 

where we place the fields in our diagram
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typedef struct simplestring_st {
char* word;
int length;

} SimpleString;
SimpleString my_word; ?

my_word
length

word
?



Structs and Pointers
● “.” to access field from struct instance
● “->” to access field from struct pointer

char cse333[] = "cse333";
SimpleString cse333_ss;
SimpleString* cse333_ptr = &cse333_ss;

cse333_count.word = cse333_ss;
cse333_ptr->length = strlen(cse333);

6
cse333_str

length

word

'c' 's' 'e' '3' '3' '3' '\0'cse333

cse333_ptr
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typedef struct simplestring_st {
char* word;
int length;

} SimpleString;



Passing Structs as Parameters

● Assignment copies over all of the field values
○ Unlike reference copying in Java

● Structs are pass-by-copy (as arguments and return values)
○ Can imitate pass-by-reference by passing pointer to struct instance 

instead
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Exercise 4
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Complete the Memory Diagram

int main(int argc, char* argv[]) {
char comp[] = "computer";
SimpleString ss = {comp, strlen(comp)};
SimpleString* ss_ptr = &ss;

printf("1. %s, %d\n", ss_ptr->word,
ss_ptr->length);

...
}

Note: boxes with a function 
name above are local 
variables on the stack
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Console output

1. computer, 8

8
ss

length

word

'c' 'o' 'm' 'p' 'u' 't' 'e' 'r' '\0'comp

ss_ptr

main



length

word

The Heap

8
ss

length

word

'c' 'o' 'm' 'p' 'u' 't' 'e' 'r' '\0'comp

ss_ptr

main

// continued main code
char cse[] = "cse333";
InitWord(cse, ss_ptr);
printf("2. %s, %d\n", ss_ptr->word,

ss_ptr->length);
...

}

void InitWord(char* word, SimpleString* dest) {
dest = (SimpleString*)

malloc(sizeof(SimpleString));
dest->length = strlen(word);
dest->word = (char*) malloc(sizeof(char) *

(dest->length + 1));
strncpy(dest->word, word, dest->length + 1);

}

?InitWord

dest
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Console output

1. computer, 8
2. computer, 8

word 

'c' 's' 'e' '3' '3' '3' '\0'cse
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'c' 's' 'e' '3' '3' '3' '\0'



The Heap

ss
length

word

'c' 'o' 'm' 'p' 'u' 't' 'e' 'r' '\0'comp

ss_ptr

main

8

InitWord

length

word

6

The Stack

'c' 's' 'e' '3' '3' '3' '\0'

'c' 's' 'e' '3' '3' '3' '\0'

new_word

ss_ptr

cse



Exercise 5 (Bonus)
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Exercise 5

● InitWord doesn’t initialize a SimpleString properly… how can we fix that?
● If we can’t edit the original pointer… modify a pointer to the pointer in main!
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void InitWord(char* word, SimpleString** dest) {
*dest = (SimpleString*) malloc(sizeof(SimpleString));

(*dest)->length = strlen(word);
(*dest)->word = (char*) malloc(sizeof(char) * ((*dest)->length + 1));

strncpy((*dest)->word, word, (*dest)->length + 1);
}


