
CSE 333 22au
Section 1
C, Pointers, and Gitlab
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Logistics
● Exercise 0:

○ Due Friday @ 10:00am (9/30)

● Homework 0:
○ Due Monday @ 11:00pm (10/3)
○ Meant to acquaint you to your repo and project logistics

2



Icebreaker!

Please turn to the people next to you and share:

● Name and Year
● What are you excited about in 333?
● Favorite type of peanut butter (Creamy, Chunky, no preference/allergic)
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Setting Up
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gcc 11

● CSE Lab machines and the attu cluster have been updated to use gcc 11.
● As such we’ll be using gcc 11 this quarter
● To verify that you’re using gcc 11 run:

○ gcc -v or
○ gcc --version

● If you use the CSE Linux home VM, you need to use the new 22au version even if you 
have an older one installed.
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git/Gitlab Reference
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Please take out your devices and follow along ☺

We have a page detailing the process of setting up Gitlab and git!

https://courses.cs.washington.edu/courses/cse333/22au/resources/git_tutorial.html

We’ll be following this document during our demo.

https://courses.cs.washington.edu/courses/cse333/22au/resources/git_tutorial.html


Accessing Gitlab

● Sign-in using your CSE NetID @ 
https://gitlab.cs.washington.edu/

● There should be a repo created for 
you titled: cse333-22au-<netid>

● Please let us know if you don’t have 
one!
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https://gitlab.cs.washington.edu/


SSH Key Generation

Step 1a) See if you have an existing SSH key
● Run cat ~/.ssh/id_rsa.pub
● If you see a long string starting with ssh-rsa or ssh-dsa go to Step 2

Step 1b) Generate a new SSH key
● If you don’t have an existing SSH key, you’ll need to create one
● Run ssh-keygen -t rsa -C "<netid>@cs.washington.edu" to generate a 

new key
● Hit enter to skip creating a password

○ git docs suggest creating a password, but it’s overkill for CSE333
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Adding your SSH key to Gitlab

Step 2) Copy your SSH key
● Run cat ~/.ssh/id_rsa.pub
● Copy the complete key starting with ssh- and ending with your username and host

(i.e. <netid>@cs.washington.edu)

Step 3) Add your SSH key to Gitlab
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Adding your SSH key to Gitlab

Step 3) Add your SSH key to Gitlab
● Navigate to your ssh-keys page 

(click on your avatar in the upper-
right, then “Preferences,” then 
“SSH Keys” in the left-side menu)

● Paste into the “Key” text box and 
give a “Title” to identify what 
machine the key is for

● Click the green “Add key” button 
below “Title”
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Setting up git

● The git command looks for a file named .gitconfig in your home directory.  
Some commands like commit and push expect certain options to be set and will 
produce verbose messages if not.

● If you have not already configured git, enter the following commands (once) in a 
terminal window to set these values:

git config --global user.name “<your name>”

git config --global user.email <your netid>@cs.washington.edu

git config --global push.default simple
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First Commit
1. git clone <repo url from project page>

a. Clones your repo
2. touch README.md

a. Creates an empty file called README.md
3. git status

a. Prints out the status of the repo:  you should see 1 new file README.md
4. git add README.md (or: git stage README.md)

a. Stages a new file/updated file for commit.  
git status: README.md staged for commit

5. git commit -m "First Commit"
a. Commits all staged files with the provided comment/message.  
git status: Your branch is ahead by 1 commit.

6. git push
a. Publishes the changes to the central repo. 

You should now see these changes in the web interface (may need to refresh).
7. Might need git push -u origin master on first commit (only), but would be unusual for this to happen
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Git Repo Usage
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Try to use the command line interface (not Gitlab’s web interface)

Only push files used to build your code to the repo
• No executables, object files, etc.
• Don’t always use git add . to add all your local files

Commit and push when an individual chunk of work is tested and done
• Don’t push after every edit
• Don’t only push once when everything is done



Pointer Review
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Pointer Background
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type* name;

int32_t* ptr;

0x7ff….ptr

ptr

● Primitive data type

● Meant to store an address of a 
value/type (like keeping track 
of a location in memory)

● Often denoted with an arrow 
in memory diagrams



510

Pointer Syntax and Semantics
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int32_t x;
int32_t* ptr;

ptr

x

ptr = &x;
x = 5;
*ptr = 10;

● How to get a variable’s address 
(location in memory)?
○ Using the & operator
○ Getting the “address of”

● How to get the associated value of an 
address?
○ Using the * operator
○ Dereferencing memory



Exercise 1a
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x
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x_ptr (foo)

y_ptr (foo)

z_ptr (foo)
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37

Draw a memory diagram like the one above for the following code 
and determine what the output will be.

void foo(int32_t* x_ptr, int32_t* y_ptr, int32_t* z_ptr) {
x_ptr = y_ptr;
*x_ptr = *z_ptr;
*z_ptr = 37;

}

int main(int argc, char* argv[]) {
int32_t x = 5, y = 22, z = 42;
foo(&x, &y, &z);
printf("%d, %d, %d\n", x, y, z);
return EXIT_SUCCESS;

} So, the code will output 
5, 42, 37.



Function Pointers
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Function Pointers

● Pointers can store addresses of 
functions
○ Functions are just instructions in 

read-only memory, their names 
are pointers to this memory.

● Used when performing operations 
for a function to use
○ Like a comparator for a sorter to 

use in Java
○ Reduces redundancy
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int one()   { return 1; }
int two()   { return 2; }
int three() { return 3; }

int get(int (*func_name)()) {
return func_name();

}

int main(int argc, char* argv[]) {
int res1 = get(one);
int res2 = get(two);
int res3 = get(three);
printf("%d, %d, %d\n", res1, res2, res3);
return EXIT_SUCCESS;

}



Output Parameters
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Output Parameters

● Idea: Not necessarily returning values through the return statement (%rax register)
○ Rather it is changing a location in memory to be another value
○ Manipulating the stack

● Output Parameters is an C idiom in order to emulate “returning values” through 
parameters
○ Call the function with a parameter that takes in a pointer, or an “address of” a variable
○ This will give a location in memory to change inside of the called function
○ The function will dereference that location and  change it to give you a “returned” value

● This is particularly helpful for returning multiple values

22



Output Parameter Example

23

● Which of the following act as 
returning a value back to main?

● What gets printed?

void division(int32_t num, int32_t den,
int32_t* quotient,
int32_t* remainder) {

*quotient = num / den;
*remainder = num % den;

}

int main(int argc, char* argv[]) {
int32_t num = 22, den = 5, quot, rem;
division(num, den, &quot, &rem);
printf("%d, %d\n", quot, rem);
return EXIT_SUCCESS;

}

quotient and remainder

4, 2



C-Strings
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C-Strings

● A string in C is declared as an array of characters that is terminated by a 
null character '\0'.

● When allocating space for a string, remember to add an extra element for 
the null character.

25

char str_name[size];



char str[6] = {'H','e','l','l','o','\0'};  // list initialization
char str[6] = "Hello";        // string literal initialization

Initialization Examples
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index 0 1 2 3 4 5

value 'H' 'e' 'l' 'l' 'o' '\0'

- Both initialize the array in the declaration scope (e.g., on the Stack if a 
local var), though the latter can be thought of copying the contents from 
the string literal.
○ The size 6 is optional, as it can be inferred from the initialization.



char* str = "Hello";

String Literal Example
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index 0 1 2 3 4 5

value ‘H’ ‘e’ ‘l’ ‘l’ ‘o’ \0

- By default, using a string literal will allocate and initialize the character 
array in read-only memory and the expression will return the address of 
the array, which can be stored in a pointer.

0x55..str



Exercise 1b
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void bar(char ch) {
ch = '3';

}

int main(int argc, char* argv[]) {
char fav_class[] = "CSE331";
bar(fav_class[5]);
printf("%s\n", fav_class);  // should print "CSE333"
return EXIT_SUCCESS;

}

char ch
bar stack frame
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Modifying the argument ch in bar will not affect fav_class in 
main() because arguments in C are always passed by value. 

In order to modify fav_class in main(), we need to pass a 
pointer to a character (char*) into bar and then dereference it:

void bar_fixed(char* ch) {
*ch = '3';

}

The following code has a bug. What’s the problem, and how would you fix it?

char[] fav_class 
main stack frame

'C' '\0''S' 'E' '3' '3' '1'

'1''3'



void bar_fixed(char* ch) {
*ch = '3';

}

int main(int argc, char* argv[]) {
char fav_class[] = "CSE331";
bar(&fav_class[5]);
printf("%s\n", fav_class);  // should print "CSE333"
return EXIT_SUCCESS;

}
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Modifying the argument ch in bar will not affect fav_class in 
main() because arguments in C are always passed by value. 

In order to modify fav_class in main(), we need to pass a 
pointer to a character (char*) into bar and then dereference it:

void bar_fixed(char* ch) {
*ch = '3';

}

The following code has a bug. What’s the problem, and how would you fix it?

char[] fav_class 
main stack frame

'C' '\0''S' 'E' '3' '3' '1''3'

char* ch
bar_fixed stack frame


