CSE 333 22au
Section 1

C, Pointers, and Gitlab

W UNIVERSITY of WASHINGTON

Logistics

e ExerciseO:
o Due Friday @ 10:00am (9/30)

e Homework0:
o DueMonday @ 11:00pm (10/3)
o Meant to acquaint you to your repo and project logistics

Icebreaker!

Please turn to the people next to you and share:
e Name and Year

o What are you excited about in 3337
e Favorite type of peanut butter (Creamy, Chunky, no preference/allergic)

Setting Up

gcc 11

e CSE Lab machines and the attu cluster have been updated to use gcc 11.
e Assuchwe’llbeusing gcc 11 this quarter
e To verify thatyou’reusing gcc 11 run:

o gcc -vor

O gcc --version

e If you use the CSE Linux home VM, you need to use the new 22au version even if you
have an older one installed.

git/ Gitlab Reference

Please take out your devices and follow along &
We have a page detailing the process of setting up Gitlab and git!

https://courses.cs.washington.edu/courses/cse333/22au/resources/git_tutorial.html

We’ll be following this document during our demo.

https://courses.cs.washington.edu/courses/cse333/22au/resources/git_tutorial.html

CSE 333: Systems Programming Home Calendar Assignments Resources

Accessing Gitlab Resources

Suggestion: bookmark this page in your web browser for quick access.

CSE 333 Administrative Info
H _‘ H Syllabus
e Sign-in using your CSE NetID @ S ey
Course Calendar

https://gitlab.cs.washington.edu/

Sections

Assignments

[There Shou ld be a repo Created for Gradescope (exercise submission and all grading)

Course Canvas page (Office hour zoom links and gradebook primarily)

you titled: cse333-22au-<netid>

. y Remote office hours & computing logistics
. Please let uS knOW If you don t have Using VS Code to do remote editing on the attu machines
Using SCP to transfer files from the attu machines
O n e I vim cheat sheet (vimrc.txt configuration file)
L]

Resources

Linux man pages

gdb manual

gdb card

cs:app (351 textbook)

Google C++ style guide

cplusplus.com: C/C++ reference

cplusplus.com: C++ language tutorial
cppreference.com: another good C/C++ reference site
C++FAQ

O'Reilly books online (use UW login to access books)
CSE 333 git/gitlab guide

CSE GitLab 4—

GIT website, GIT book

CSE Home VM

https://gitlab.cs.washington.edu/

SSH Key Generation

Step 1a) See if you have an existing SSH key
e Runcat ~/.ssh/id_rsa.pub
e Ifyou seealongstring starting with ssh—rsa or ssh—-dsa go to Step 2

Step 1b) Generate a new SSH key
e Ifyou don’t have an existing SSH key, you’ll need to create one
e Runssh-keygen -t rsa -C "<netid>@cs.washington.edu" to generate a
new key

e Hit enter to skip creating a password
o gitdocs suggest creating a password, but it’s overkill for CSE333

Adding your SSH key to Gitlab

Step 2) Copy your SSH key

e Runcat ~/.ssh/id_rsa.pub
e Copy the complete key starting with ssh- and ending with your username and host
(i.e. <netid>@cs.washington.edu)

Step 3) Add your SSH key to Gitlab

Adding your SSH key to Gitlab

Step 3) Add your SSH key to Gitlab

e Navigate to your ssh-keys page
(click on your avatar in the upper-
right, then “Preferences,” then
“SSH Keys” in the left-side menu)

e Pasteinto the “Key” text box and
give a “Title” to identify what
machine the key is for

e Click the green “Add key” button
below “Title”

Add an SSH key

Add an SSH key for secure access to GitLab. Learn more.

Key

Begins with 'ssh-rsa’, 'ecdsa-sha2-nistp256’, ‘ecdsa-sha2-nistp384', 'ecdsa-sha2-nistp521', 'ssh-

ed25519', 'sk-ecdsa-sha2-nistp256@openssh.com’, or 'sk-ssh-ed25519@openssh.com’.
Title Expiration date

mm /dd /yyyy

Key titles are publicly visible. Key becomes invalid on this date.

10

Setting up git

e The git command looks for a file named . gitconfiginyour home directory.
Some commands like comm1 t and push expect certain options to be set and will
produce verbose messages if not.

e Ifyou have not already configured g1 t, enter the following commands (once) in a
terminal window to set these values:

git config --global user.name “<your name>?”

git config —--global user.email <your netid>@cs.washington.edu

git config --global push.default simple

11

First Commit

1.

git clone <repo url from project page>
a. Clones your repo
touch README.md
a. Creates an empty file called README . md
git status
a. Prints out the status of the repo: you should see 1 new file README . md
git add README.md (or: git stage README.md)
a. Stages a new file/updated file for commit.
git status: README.md staged for commit
git commit -m "First Commit"
a. Commits all staged files with the provided comment/message.
git status: Your branch is ahead by 1 commit.
git push
a. Publishes the changes to the central repo.
You should now see these changes in the web interface (may need to refresh).
Might need git push -u origin master on first commit (only), but would be unusual for this to happen

12

Git Repo Usage
Try to use the command line interface (not Gitlab’s web interface)

Only push files used to build your code to the repo
« No executables, object files, etc.
« Don’talwaysusegit add . toaddallyourlocalfiles

Commit and push when an individual chunk of work is tested and done
« Don’t push after every edit
« Don’tonly push once when everything is done

13

Pointer Review

Pointer Background

e Primitive data type

® Meantto store an address of a

value/type (like keeping track
of a location in memory)

e Often denoted with an arrow
in memory diagrams

type*x name;

int32_t*x ptr;

ptr

ptr

OxTff....

v

15

Pointer Syntax and Semantics

int32_t x;
e How to getavariable’s address int32_t*x ptr;
(location in memory)? otr = &x:
o Using the & operator X = 5;
o Getting the “address of” xptr = 10;
e How to get the associated value of an
address?
o Usingthe * operator X 10
o Dereferencing memory >
ptr —

Exercise 1a

Draw a memory diagram like the one above for the following code
and determine what the output will be.

void foo(int32_t* x_ptr, int32_t*x y_ptr, int32_tx z_ptr) {
X_ptr = y_ptr;
*X_ptr = *xz_ptr;
xz_ptr = 37,

}

int main(int argc, charx argv([]) {
int32_t x = 5, y = , Z = ;
foo(&x, &y, &z);
printf("%d, %d, %d\n", x, y, z);
return 5

x_ptr (foo) X
5
y_ptr (foo) y
22
z_ptr (foo) z
37

So, the code will output

5,42, 37.

18

Function Pointers

Function Pointers

e Pointers can store addresses of
functions
o Functions are just instructionsin
read-only memory, their names
are pointers to this memory.
e Used when performing operations
for a function to use
o Like a comparator for a sorter to
usein Java
o Reduces redundancy

int one() { return 1; }
int two() { return 2; }
int three() { return 3; }

int get(int (xfunc_name) ()) {
return func_name() ;

}

int main(int argc, charx argv[]) {
int resl = get(one);
int res2 get(two);
int res3 = get(three);

printf("%d, %d, %d\n", resl, res2, res3);

return 5

20

Output Parameters

Output Parameters

e Idea: Not necessarily returning values through the return statement (%rax register)
o Ratheritis changing a location in memory to be another value
o Manipulating the stack

e Output Parametersis an Cidiom in order to emulate “returning values” through

parameters
o Call the function with a parameter that takes in a pointer, or an “address of” a variable
o This will give a location in memory to change inside of the called function
o The function will dereference that location and change it to give you a “returned” value

e Thisis particularly helpful for returning multiple values

22

Output Parameter Example

void division(int32_t num, int32_t den,

e Which of the following act as

returning a value back to main? :
*quotient =

*remainder
quotient and remainder }

int32_t* quotient,
int32_t* remainder) {
num / den;
num % den;

int main(int argc, char* argv[]) {

e What gets printed? int32_t num

= , den = 5, quot, rem;

division(num, den, ", &rem);

4, 2 printf("%d,
return

%d\n", quot, rem);

b

23

C-Strings

C-Strings

[size];

e Astringin Cisdeclared as an array of characters that is terminated by a
null character '\0"'.

e When allocating space for a string, remember to add an extra element for
the null character.

25

Initialization Examples

[6] = {'H','e'","L","L','0","\0"'}; // list initialization

[6] = "Hello"; // string literal initialization
index 0 1 2 3 4 5
Va-l.ue IHI Iel I'LI I'L! IOI I\OI

- Bothinitialize the array in the declaration scope (e.g., on the Stack if a
local var), though the latter can be thought of copying the contents from
the string literal.

o Thesize 6 is optional, as it can be inferred from the initialization.

26

String Literal Example

= "Hello";
str | Ox55..
index <@ 1 2 3 4 5
value ‘H’ ‘e’ ‘1’ ‘1’ ‘o’ \O

- By default, using a string literal will allocate and initialize the character
array in read-only memory and the expression will return the address of
the array, which can be stored in a pointer.

Exercise 1b

The following code has a bug. What’s the problem, and how would you fix it?

void bar(char ch) {
=ch = '3"'; char[] fav_class

-] main stack frame e s | s s e e

int main(int argc, char* argv[]) {
= char fav_class[] = "CSE331"; bar stack frame char ch | '3
m bar (fav_class[5]);

mprintf("%s\n", fav_class); // should print "CSE333"

return 5

}

Modifying the argument ch in bar will not affect fav_classin
main () because argumentsin C are always passed by value.

In order to modify fav_classinmain(), we need to pass a
pointer to a character (char) into bar and then dereference it:

void bar_fixed(charx ch) {
xch = '3"';

}

The following code has a bug. What’s the problem, and how would you fix it?

void bar_fixed(charx ch) {
= *ch = '3'; char[] fav_class

- } main stack frame

ICI ISI IEI |3l l3l l3l I\Ol

int main(int argc, char* argv[]) { f
char fav_classl] = "CSE33LY; bar_f1ixed stack frame charx ch \\/

= bar (&fav_class[5]); -

mp Printf("%s\n", fav_class); // should print "CSE333"

return :

})

Modifying the argument ch in bar will not affect fav_classin
main () because argumentsin C are always passed by value.

In order to modify fav_classinmain(), we need to pass a
pointer to a character (char) into bar and then dereference it:

void bar_fixed(charx ch) {
xch = '3"';

}

