CSE 333 22au
Section 1

C, Pointers, and Gitlab

W UNIVERSITY of WASHINGTON



Logistics

e ExerciseO:
o Due Friday @ 10:00am (9/30)

e Homework0:
o DueMonday @ 11:00pm (10/3)
o Meant to acquaint you to your repo and project logistics



Icebreaker!

Please turn to the people next to you and share:
e Name and Year

o What are you excited about in 3337
e Favorite type of peanut butter (Creamy, Chunky, no preference/allergic)



Setting Up




gcc 11

e CSE Lab machines and the attu cluster have been updated to use gcc 11.
e Assuchwe’llbeusing gcc 11 this quarter
e To verify thatyou’reusing gcc 11 run:

o gcc -vor

O gcc --version

e If you use the CSE Linux home VM, you need to use the new 22au version even if you
have an older one installed.



git/ Gitlab Reference

Please take out your devices and follow along &
We have a page detailing the process of setting up Gitlab and git!

https://courses.cs.washington.edu/courses/cse333/22au/resources/git_tutorial.html

We’ll be following this document during our demo.


https://courses.cs.washington.edu/courses/cse333/22au/resources/git_tutorial.html

CSE 333: Systems Programming  Home  Calendar  Assignments  Resources

Accessing Gitlab Resources

Suggestion: bookmark this page in your web browser for quick access.

CSE 333 Administrative Info
H _‘ H Syllabus
e Sign-in using your CSE NetID @ S ey
Course Calendar

https://gitlab.cs.washington.edu/

Sections

Assignments

[ There Shou ld be a repo Created for Gradescope (exercise submission and all grading)

Course Canvas page (Office hour zoom links and gradebook primarily)

you titled: cse333-22au-<netid>

. y Remote office hours & computing logistics
. Please let uS knOW If you don t have Using VS Code to do remote editing on the attu machines
Using SCP to transfer files from the attu machines
O n e I vim cheat sheet (vimrc.txt configuration file)
L]

Resources

Linux man pages

gdb manual

gdb card

cs:app (351 textbook)

Google C++ style guide

cplusplus.com: C/C++ reference

cplusplus.com: C++ language tutorial
cppreference.com: another good C/C++ reference site
C++FAQ

O'Reilly books online (use UW login to access books)
CSE 333 git/gitlab guide

CSE GitLab 4—

GIT website, GIT book

CSE Home VM


https://gitlab.cs.washington.edu/

SSH Key Generation

Step 1a) See if you have an existing SSH key
e Runcat ~/.ssh/id_rsa.pub
e Ifyou seealongstring starting with ssh—rsa or ssh—-dsa go to Step 2

Step 1b) Generate a new SSH key
e Ifyou don’t have an existing SSH key, you’ll need to create one
e Runssh-keygen -t rsa -C "<netid>@cs.washington.edu" to generate a
new key

e Hit enter to skip creating a password
o gitdocs suggest creating a password, but it’s overkill for CSE333



Adding your SSH key to Gitlab

Step 2) Copy your SSH key

e Runcat ~/.ssh/id_rsa.pub
e Copy the complete key starting with ssh- and ending with your username and host
(i.e. <netid>@cs.washington.edu)

Step 3) Add your SSH key to Gitlab



Adding your SSH key to Gitlab

Step 3) Add your SSH key to Gitlab

e Navigate to your ssh-keys page
(click on your avatar in the upper-
right, then “Preferences,” then
“SSH Keys” in the left-side menu)

e Pasteinto the “Key” text box and
give a “Title” to identify what
machine the key is for

e Click the green “Add key” button
below “Title”

Add an SSH key

Add an SSH key for secure access to GitLab. Learn more.

Key

Begins with 'ssh-rsa’, 'ecdsa-sha2-nistp256’, ‘ecdsa-sha2-nistp384', 'ecdsa-sha2-nistp521', 'ssh-

ed25519', 'sk-ecdsa-sha2-nistp256@openssh.com’, or 'sk-ssh-ed25519@openssh.com’.
Title Expiration date

mm /dd /yyyy

Key titles are publicly visible. Key becomes invalid on this date.
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Setting up git

e The git command looks for a file named . gitconfiginyour home directory.
Some commands like comm1 t and push expect certain options to be set and will
produce verbose messages if not.

e Ifyou have not already configured g1 t, enter the following commands (once) in a
terminal window to set these values:

git config --global user.name “<your name>?”

git config —--global user.email <your netid>@cs.washington.edu

git config --global push.default simple
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First Commit

1.

git clone <repo url from project page>
a. Clones your repo
touch README.md
a. Creates an empty file called README . md
git status
a. Prints out the status of the repo: you should see 1 new file README . md
git add README.md (or: git stage README.md)
a. Stages a new file/updated file for commit.
git status: README.md staged for commit
git commit -m "First Commit"
a. Commits all staged files with the provided comment/message.
git status: Your branch is ahead by 1 commit.
git push
a. Publishes the changes to the central repo.
You should now see these changes in the web interface (may need to refresh).
Might need git push -u origin master on first commit (only), but would be unusual for this to happen
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Git Repo Usage
Try to use the command line interface (not Gitlab’s web interface)

Only push files used to build your code to the repo
« No executables, object files, etc.
« Don’talwaysusegit add . toaddallyourlocalfiles

Commit and push when an individual chunk of work is tested and done
« Don’t push after every edit
« Don’tonly push once when everything is done
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Pointer Review




Pointer Background

e Primitive data type

® Meantto store an address of a

value/type (like keeping track
of a location in memory)

e Often denoted with an arrow
in memory diagrams

type*x name;

int32_t*x ptr;

ptr

ptr

OxTff....

v
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Pointer Syntax and Semantics

int32_t x;
e How to getavariable’s address int32_t*x ptr;
(location in memory)? otr = &x:
o Using the & operator X = 5;
o Getting the “address of” xptr = 10;
e How to get the associated value of an
address?
o Usingthe * operator X 10
o Dereferencing memory >
ptr —




Exercise 1a




Draw a memory diagram like the one above for the following code
and determine what the output will be.

void foo(int32_t* x_ptr, int32_t*x y_ptr, int32_tx z_ptr) {
X_ptr = y_ptr;
*X_ptr = *xz_ptr;
xz_ptr = 37,

}

int main(int argc, charx argv([]) {
int32_t x = 5, y = , Z = ;
foo(&x, &y, &z);
printf("%d, %d, %d\n", x, y, z);
return 5

x_ptr (foo) X
5
y_ptr (foo) y
22
z_ptr (foo) z
37

So, the code will output

5,42, 37.
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Function Pointers




Function Pointers

e Pointers can store addresses of
functions
o Functions are just instructionsin
read-only memory, their names
are pointers to this memory.
e Used when performing operations
for a function to use
o Like a comparator for a sorter to
usein Java
o Reduces redundancy

int one() { return 1; }
int two() { return 2; }
int three() { return 3; }

int get(int (xfunc_name) ()) {
return func_name() ;

}

int main(int argc, charx argv[]) {
int resl = get(one);
int res2 get(two);
int res3 = get(three);

printf("%d, %d, %d\n", resl, res2, res3);

return 5
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Output Parameters




Output Parameters

e Idea: Not necessarily returning values through the return statement (%rax register)
o Ratheritis changing a location in memory to be another value
o Manipulating the stack

e Output Parametersis an Cidiom in order to emulate “returning values” through

parameters
o Call the function with a parameter that takes in a pointer, or an “address of” a variable
o This will give a location in memory to change inside of the called function
o The function will dereference that location and change it to give you a “returned” value

e Thisis particularly helpful for returning multiple values
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Output Parameter Example

void division(int32_t num, int32_t den,

e Which of the following act as

returning a value back to main? :
*quotient =

*remainder
quotient and remainder }

int32_t* quotient,
int32_t* remainder) {
num / den;
num % den;

int main(int argc, char* argv[]) {

e What gets printed? int32_t num

= , den = 5, quot, rem;

division(num, den, &quot, &rem);

4, 2 printf("%d,
return

%d\n", quot, rem);

b
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C-Strings




C-Strings

[size];

e Astringin Cisdeclared as an array of characters that is terminated by a
null character '\0"'.

e When allocating space for a string, remember to add an extra element for
the null character.
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Initialization Examples

[6] = {'H','e'","L","L','0","\0"'}; // list initialization

[6] = "Hello"; // string literal initialization
index 0 1 2 3 4 5
Va-l.ue IHI Iel I'LI I'L! IOI I\OI

- Bothinitialize the array in the declaration scope (e.g., on the Stack if a
local var), though the latter can be thought of copying the contents from
the string literal.

o Thesize 6 is optional, as it can be inferred from the initialization.

26



String Literal Example

= "Hello";
str | Ox55..
index <@ 1 2 3 4 5
value ‘H’ ‘e’ ‘1’ ‘1’ ‘o’ \O

- By default, using a string literal will allocate and initialize the character
array in read-only memory and the expression will return the address of
the array, which can be stored in a pointer.



Exercise 1b




The following code has a bug. What’s the problem, and how would you fix it?

void bar(char ch) {
=ch = '3"'; char[] fav_class

-] main stack frame e s | s s e e

int main(int argc, char* argv[]) {
= char fav_class[] = "CSE331"; bar stack frame char ch | '3
m bar (fav_class[5]);

mprintf("%s\n", fav_class); // should print "CSE333"

return 5

}

Modifying the argument ch in bar will not affect fav_classin
main () because argumentsin C are always passed by value.

In order to modify fav_classinmain(), we need to pass a
pointer to a character (char ) into bar and then dereference it:

void bar_fixed(charx ch) {
xch = '3"';

}




The following code has a bug. What’s the problem, and how would you fix it?

void bar_fixed(charx ch) {
= *ch = '3'; char[] fav_class

- } main stack frame

ICI ISI IEI |3l l3l l3l I\Ol

int main(int argc, char* argv[]) { f
char fav_classl] = "CSE33LY; bar_f1ixed stack frame charx ch \\/

= bar (&fav_class[5]); -

mp Printf("%s\n", fav_class); // should print "CSE333"

return :

} )

Modifying the argument ch in bar will not affect fav_classin
main () because argumentsin C are always passed by value.

In order to modify fav_classinmain(), we need to pass a
pointer to a character (char ) into bar and then dereference it:

void bar_fixed(charx ch) {
xch = '3"';

}




