
CSE 333 22au
Section 1
C, Pointers, and Gitlab

1

Logistics
● Exercise 0:

○ Due Friday @ 10:00am (9/30)

● Homework 0:
○ Due Monday @ 11:00pm (10/3)
○ Meant to acquaint you to your repo and project logistics

2

Icebreaker!

Please turn to the people next to you and share:

● Name and Year
● What are you excited about in 333?
● Favorite type of peanut butter (Creamy, Chunky, no preference/allergic)

3

Setting Up

4

gcc 11

● CSE Lab machines and the attu cluster have been updated to use gcc 11.
● As such we’ll be using gcc 11 this quarter
● To verify that you’re using gcc 11 run:

○ gcc -v or
○ gcc --version

● If you use the CSE Linux home VM, you need to use the new 22au version even if you
have an older one installed.

5

git/Gitlab Reference

6

Please take out your devices and follow along ☺

We have a page detailing the process of setting up Gitlab and git!

https://courses.cs.washington.edu/courses/cse333/22au/resources/git_tutorial.html

We’ll be following this document during our demo.

https://courses.cs.washington.edu/courses/cse333/22au/resources/git_tutorial.html

Accessing Gitlab

● Sign-in using your CSE NetID @
https://gitlab.cs.washington.edu/

● There should be a repo created for
you titled: cse333-22au-<netid>

● Please let us know if you don’t have
one!

7

https://gitlab.cs.washington.edu/

SSH Key Generation

Step 1a) See if you have an existing SSH key
● Run cat ~/.ssh/id_rsa.pub
● If you see a long string starting with ssh-rsa or ssh-dsa go to Step 2

Step 1b) Generate a new SSH key
● If you don’t have an existing SSH key, you’ll need to create one
● Run ssh-keygen -t rsa -C "<netid>@cs.washington.edu" to generate a

new key
● Hit enter to skip creating a password

○ git docs suggest creating a password, but it’s overkill for CSE333

8

Adding your SSH key to Gitlab

Step 2) Copy your SSH key
● Run cat ~/.ssh/id_rsa.pub
● Copy the complete key starting with ssh- and ending with your username and host

(i.e. <netid>@cs.washington.edu)

Step 3) Add your SSH key to Gitlab

9

Adding your SSH key to Gitlab

Step 3) Add your SSH key to Gitlab
● Navigate to your ssh-keys page

(click on your avatar in the upper-
right, then “Preferences,” then
“SSH Keys” in the left-side menu)

● Paste into the “Key” text box and
give a “Title” to identify what
machine the key is for

● Click the green “Add key” button
below “Title”

10

Setting up git

● The git command looks for a file named .gitconfig in your home directory.
Some commands like commit and push expect certain options to be set and will
produce verbose messages if not.

● If you have not already configured git, enter the following commands (once) in a
terminal window to set these values:

git config --global user.name “<your name>”

git config --global user.email <your netid>@cs.washington.edu

git config --global push.default simple

11

First Commit
1. git clone <repo url from project page>

a. Clones your repo
2. touch README.md

a. Creates an empty file called README.md
3. git status

a. Prints out the status of the repo: you should see 1 new file README.md
4. git add README.md (or: git stage README.md)

a. Stages a new file/updated file for commit.
git status: README.md staged for commit

5. git commit -m "First Commit"
a. Commits all staged files with the provided comment/message.
git status: Your branch is ahead by 1 commit.

6. git push
a. Publishes the changes to the central repo.

You should now see these changes in the web interface (may need to refresh).
7. Might need git push -u origin master on first commit (only), but would be unusual for this to happen

12

Git Repo Usage

13

Try to use the command line interface (not Gitlab’s web interface)

Only push files used to build your code to the repo
• No executables, object files, etc.
• Don’t always use git add . to add all your local files

Commit and push when an individual chunk of work is tested and done
• Don’t push after every edit
• Don’t only push once when everything is done

Pointer Review

14

Pointer Background

15

type* name;

int32_t* ptr;

0x7ff….ptr

ptr

● Primitive data type

● Meant to store an address of a
value/type (like keeping track
of a location in memory)

● Often denoted with an arrow
in memory diagrams

510

Pointer Syntax and Semantics

16

int32_t x;
int32_t* ptr;

ptr

x

ptr = &x;
x = 5;
*ptr = 10;

● How to get a variable’s address
(location in memory)?
○ Using the & operator
○ Getting the “address of”

● How to get the associated value of an
address?
○ Using the * operator
○ Dereferencing memory

Exercise 1a

17

18

5

22

42

x

y

z

x_ptr (foo)

y_ptr (foo)

z_ptr (foo)

42

37

Draw a memory diagram like the one above for the following code
and determine what the output will be.

void foo(int32_t* x_ptr, int32_t* y_ptr, int32_t* z_ptr) {
x_ptr = y_ptr;
*x_ptr = *z_ptr;
*z_ptr = 37;

}

int main(int argc, char* argv[]) {
int32_t x = 5, y = 22, z = 42;
foo(&x, &y, &z);
printf("%d, %d, %d\n", x, y, z);
return EXIT_SUCCESS;

} So, the code will output
5, 42, 37.

Function Pointers

19

Function Pointers

● Pointers can store addresses of
functions
○ Functions are just instructions in

read-only memory, their names
are pointers to this memory.

● Used when performing operations
for a function to use
○ Like a comparator for a sorter to

use in Java
○ Reduces redundancy

20

int one() { return 1; }
int two() { return 2; }
int three() { return 3; }

int get(int (*func_name)()) {
return func_name();

}

int main(int argc, char* argv[]) {
int res1 = get(one);
int res2 = get(two);
int res3 = get(three);
printf("%d, %d, %d\n", res1, res2, res3);
return EXIT_SUCCESS;

}

Output Parameters

21

Output Parameters

● Idea: Not necessarily returning values through the return statement (%rax register)
○ Rather it is changing a location in memory to be another value
○ Manipulating the stack

● Output Parameters is an C idiom in order to emulate “returning values” through
parameters
○ Call the function with a parameter that takes in a pointer, or an “address of” a variable
○ This will give a location in memory to change inside of the called function
○ The function will dereference that location and change it to give you a “returned” value

● This is particularly helpful for returning multiple values

22

Output Parameter Example

23

● Which of the following act as
returning a value back to main?

● What gets printed?

void division(int32_t num, int32_t den,
int32_t* quotient,
int32_t* remainder) {

*quotient = num / den;
*remainder = num % den;

}

int main(int argc, char* argv[]) {
int32_t num = 22, den = 5, quot, rem;
division(num, den, ", &rem);
printf("%d, %d\n", quot, rem);
return EXIT_SUCCESS;

}

quotient and remainder

4, 2

C-Strings

24

C-Strings

● A string in C is declared as an array of characters that is terminated by a
null character '\0'.

● When allocating space for a string, remember to add an extra element for
the null character.

25

char str_name[size];

char str[6] = {'H','e','l','l','o','\0'}; // list initialization
char str[6] = "Hello"; // string literal initialization

Initialization Examples

26

index 0 1 2 3 4 5

value 'H' 'e' 'l' 'l' 'o' '\0'

- Both initialize the array in the declaration scope (e.g., on the Stack if a
local var), though the latter can be thought of copying the contents from
the string literal.
○ The size 6 is optional, as it can be inferred from the initialization.

char* str = "Hello";

String Literal Example

27

index 0 1 2 3 4 5

value ‘H’ ‘e’ ‘l’ ‘l’ ‘o’ \0

- By default, using a string literal will allocate and initialize the character
array in read-only memory and the expression will return the address of
the array, which can be stored in a pointer.

0x55..str

Exercise 1b

28

void bar(char ch) {
ch = '3';

}

int main(int argc, char* argv[]) {
char fav_class[] = "CSE331";
bar(fav_class[5]);
printf("%s\n", fav_class); // should print "CSE333"
return EXIT_SUCCESS;

}

char ch
bar stack frame

29

Modifying the argument ch in bar will not affect fav_class in
main() because arguments in C are always passed by value.

In order to modify fav_class in main(), we need to pass a
pointer to a character (char*) into bar and then dereference it:

void bar_fixed(char* ch) {
*ch = '3';

}

The following code has a bug. What’s the problem, and how would you fix it?

char[] fav_class
main stack frame

'C' '\0''S' 'E' '3' '3' '1'

'1''3'

void bar_fixed(char* ch) {
*ch = '3';

}

int main(int argc, char* argv[]) {
char fav_class[] = "CSE331";
bar(&fav_class[5]);
printf("%s\n", fav_class); // should print "CSE333"
return EXIT_SUCCESS;

}

30

Modifying the argument ch in bar will not affect fav_class in
main() because arguments in C are always passed by value.

In order to modify fav_class in main(), we need to pass a
pointer to a character (char*) into bar and then dereference it:

void bar_fixed(char* ch) {
*ch = '3';

}

The following code has a bug. What’s the problem, and how would you fix it?

char[] fav_class
main stack frame

'C' '\0''S' 'E' '3' '3' '1''3'

char* ch
bar_fixed stack frame

