
CSE333, Fall 2022L22: Client-side Networking

Client-side Networking
CSE 333 Fall 2022

Instructor: Hal Perkins

Teaching Assistants:
Nour Ayad Frank Chen Nick Durand
Dylan Hartono Humza Lala Kenzie Mihardja
Bennedict Soesanto Chanh Truong Justin Tysdal
Tanay Vakharia Timmy Yang

CSE333, Fall 2022L22: Client-side Networking

Socket API: Client TCP Connection

v There are five steps:
1) Figure out the IP address and port to connect to
2) Create a socket
3) Connect the socket to the remote server
4) .read() and write() data using the socket
5) Close the socket

2

CSE333, Fall 2022L22: Client-side Networking

Step 1: DNS Lookup

v (from last time; details/examples in sections yesterday)
v See dnsresolve.cc

3

struct addrinfo {
int ai_flags; // additional flags
int ai_family; // AF_INET, AF_INET6, AF_UNSPEC
int ai_socktype; // SOCK_STREAM, SOCK_DGRAM, 0
int ai_protocol; // IPPROTO_TCP, IPPROTO_UDP, 0
size_t ai_addrlen; // length of socket addr in bytes
struct sockaddr* ai_addr; // pointer to socket addr
char* ai_canonname; // canonical name
struct addrinfo* ai_next; // can form a linked list

};

CSE333, Fall 2022L22: Client-side Networking

Step 2: Creating a Socket

v Use the socket() system call

§ Creating a socket doesn’t bind it to a local address or port yet
§ Returns file descriptor or -1 on error

int socket(int domain, int type, int protocol);

#include <arpa/inet.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <iostream>

int main(int argc, char** argv) {
int socket_fd = socket(AF_INET, SOCK_STREAM, 0);
if (socket_fd == -1) {

std::cerr << strerror(errno) << std::endl;
return EXIT_FAILURE;

}
close(socket_fd);
return EXIT_SUCCESS;

}
4

socket.cc

CSE333, Fall 2022L22: Client-side Networking

Step 3: Connect to the Server
v The connect() system call establishes a connection to

a remote host
§

• sockfd: Socket file description from Step 2
• addr and addrlen: Usually from one of the address structures

returned by getaddrinfo in Step 1 (DNS lookup)
• Returns 0 on success and -1 on error

v connect() may take some time to return
§ It is a blocking call by default
§ The network stack within the OS will communicate with the

remote host to establish a TCP connection to it
• This involves ~2 round trips across the network

int connect(int sockfd, const struct sockaddr* addr,
socklen_t addrlen);

5

CSE333, Fall 2022L22: Client-side Networking

How long are two “round trips”

v Remember this table?
§ Exact numbers change somewhat over time, but you should know

the order-of-magnitudes here

6

CSE333, Fall 2022L22: Client-side Networking

Connect Example

v See connect.cc
// Get an appropriate sockaddr structure.
struct sockaddr_storage addr;
size_t addrlen;
LookupName(argv[1], port, &addr, &addrlen);

// Create the socket.
int socket_fd = socket(addr.ss_family, SOCK_STREAM, 0);
if (socket_fd == -1) {

cerr << "socket() failed: " << strerror(errno) << endl;
return EXIT_FAILURE;

}

// Connect the socket to the remote host.
int res = connect(socket_fd,

reinterpret_cast<sockaddr*>(&addr),
addrlen);

if (res == -1) {
cerr << "connect() failed: " << strerror(errno) << endl;

}
7

CSE333, Fall 2022L22: Client-side Networking

Step 4: read()

v If there is data that has already been received by the
network stack, then read will return immediately with it
§ read() might return with less data than you asked for

v If there is no data waiting for you, by default read()
will block until something arrives
§ This might cause deadlock!
§ Can read() return 0?

9

CSE333, Fall 2022L22: Client-side Networking

Step 4: write()

v write() enqueues your data in a send buffer in the OS
and then returns
§ The OS transmits the data over the network in the background
§ When write() returns, the receiver probably has not yet

received the data!

v If there is no more space left in the send buffer, by default
write() will block

11

CSE333, Fall 2022L22: Client-side Networking

Read/Write Example

v See sendreceive.cc
§ Demo

12

while (1) {
int wres = write(socket_fd, readbuf, res);
if (wres == 0) {

cerr << "socket closed prematurely" << endl;
close(socket_fd);
return EXIT_FAILURE;

}
if (wres == -1) {

if (errno == EINTR)
continue;

cerr << "socket write failure: " << strerror(errno) << endl;
close(socket_fd);
return EXIT_FAILURE;

}
break;

}

CSE333, Fall 2022L22: Client-side Networking

Step 5: close()

v

§ Nothing special here – it’s the same function as with file I/O

§ Shuts down the socket and frees resources and file descriptors
associated with it on both ends of the connection

int close(int fd);

13

CSE333, Fall 2022L22: Client-side Networking

Extra Exercise #1

v Write a program that:
§ Reads DNS names, one per line, from stdin
§ Translates each name to one or more IP addresses
§ Prints out each IP address to stdout, one per line

14

