
CSE333, Fall 2022L16: C++ Smart Pointers

C++ Smart Pointers
CSE 333 Fall 2022

Instructor: Hal Perkins

Teaching Assistants:
Nour Ayad Frank Chen Nick Durand
Dylan Hartono Humza Lala Kenzie Mihardja
Bennedict Soesanto Chanh Truong Justin Tysdal
Tanay Vakharia Timmy Yang

CSE333, Fall 2022L16: C++ Smart Pointers

Administrivia

v Midterm grading is well along but will need a couple more
days. Sample solution will be released at the same time
graded exams are available.

v New exercise ex13 out this morning. Due Wed. 10 am
§ Some basic C++ inheritance fiddling

v hw3 due a week from Thursday
§ How’s it look?

2

CSE333, Fall 2022L16: C++ Smart Pointers

Administrivia (added Wed.)

v Midterm grades and sample solution out later today
§ Regrades enabled starting noon tomorrow; please check answers

against original and sample solution first

v New exercise ex14 out this morning. Due Mon. 10 am
§ Modify an existing program to use smart pointers and make no

other changes
§ Would be due on Friday, but Veteran’s Day holiday this year

v hw3 due a week from Thursday
§ No additional exercises until after that….

v Have a great (& productive) long weekend!
§ No class Friday – Veterans’ Day Holiday
§ But regular office hour times – zoom only though

3

CSE333, Fall 2022L16: C++ Smart Pointers

HW3 Tip
v HW3 writes some pretty big index files

§ Hundreds of thousands of write operations
§ No problem for today’s fast machines and disks!!

v Except...
§ If you’re running on attu or a CSE lab linux workstation, every write to

your personal directories goes to a network file server(!)
• ∴ Lots of slow network packets vs full-speed disks — can take much

longer to write an index to a server vs. a few sec. locally (!!)
• Suggestion: write index files to /tmp/... . That’s a local scratch disk and is

very fast. But please clean up when you’re done.
v Reminder: do your main debugging on a tiny set of files in a

couple of nested directories. So tiny that you can draw
pictures of what should be happening and then verify in gdb
and with disk file tools…
§ More about visualizing disk data in sections tomorrow!

4

CSE333, Fall 2022L16: C++ Smart Pointers

Lecture Outline

v Smart Pointers
§ Intro and toy_ptr
§ std::unique_ptr

§ Reference counting
§ std::shared_ptr and std::weak_ptr

5

CSE333, Fall 2022L16: C++ Smart Pointers

Last Time…

v We learned about STL

v We noticed that STL was doing an enormous amount of
copying

v A solution: store pointers in containers instead of objects
§ But who’s responsible for deleting and when???

6

CSE333, Fall 2022L16: C++ Smart Pointers

C++ Smart Pointers

v A smart pointer is an object that stores a pointer to a
heap-allocated object
§ A smart pointer looks and behaves like a regular C++ pointer

• By overloading *, ->, [], etc.

§ These can help you manage memory
• The smart pointer will delete the pointed-to object at the right time

including invoking the object’s destructor
– When that is depends on what kind of smart pointer you use

• With correct use of smart pointers, you no longer have to remember
when to delete heap memory! (If it’s owned by a smart pointer)

7

CSE333, Fall 2022L16: C++ Smart Pointers

A Toy Smart Pointer

v We can implement a simple one with:
§ A constructor that accepts a pointer
§ A destructor that frees the pointer
§ Overloaded * and -> operators that access the pointer

8

CSE333, Fall 2022L16: C++ Smart Pointers

ToyPtr Class Template

9

ToyPtr.cc
#ifndef _TOYPTR_H_
#define _TOYPTR_H_

template <typename T> class ToyPtr {
public:
ToyPtr(T *ptr) : ptr_(ptr) { } // constructor
~ToyPtr() { delete ptr_; } // destructor

T &operator*() { return *ptr_; } // * operator
T *operator->() { return ptr_; } // -> operator

private:
T *ptr_; // the pointer itself

};

#endif // _TOYPTR_H_

CSE333, Fall 2022L16: C++ Smart Pointers

ToyPtr Example

10

usetoy.cc
#include <iostream>
#include "ToyPtr.h"

// simply struct to illustrate the "->" operator
typedef struct { int x = 1, y = 2; } Point;
std::ostream &operator<<(std::ostream &out, const Point &rhs) {

return out << "(" << rhs.x << "," << rhs.y << ")";
}

int main(int argc, char **argv) {
// Create a dumb pointer
Point *leak = new Point;

// Create a "smart" pointer (OK, it's still pretty dumb)
ToyPtr<Point> notleak(new Point);

std::cout << " *leak: " << *leak << std::endl;
std::cout << " leak->x: " << leak->x << std::endl;
std::cout << " *notleak: " << *notleak << std::endl;
std::cout << "notleak->x: " << notleak->x << std::endl;

return 0;
}

CSE333, Fall 2022L16: C++ Smart Pointers

What Makes This a Toy?

v Can’t handle:
§ Arrays
§ Copying
§ Reassignment
§ Comparison
§ … plus many other subtleties…

v Luckily, others have built non-toy smart pointers for us!

11

CSE333, Fall 2022L16: C++ Smart Pointers

std::unique_ptr

v A unique_ptr takes ownership of a pointer
§ A template: template parameter is the type that the “owned”

pointer references (i.e., the T in pointer type T*)
§ Part of C++’s standard library (C++11)
§ Its destructor invokes delete on the owned pointer

• Invoked when unique_ptr object is delete’d or falls out of scope

12

CSE333, Fall 2022L16: C++ Smart Pointers

Using unique_ptr
#include <iostream> // for std::cout, std::endl
#include <memory> // for std::unique_ptr
#include <cstdlib> // for EXIT_SUCCESS

void Leaky() {
int *x = new int(5); // heap-allocated
(*x)++;
std::cout << *x << std::endl;

} // never used delete, therefore leak

void NotLeaky() {
std::unique_ptr<int> x(new int(5)); // wrapped, heap-allocated
(*x)++;
std::cout << *x << std::endl;

} // never used delete, but no leak

int main(int argc, char **argv) {
Leaky();
NotLeaky();
return EXIT_SUCCESS;

}
13

unique1.cc

CSE333, Fall 2022L16: C++ Smart Pointers

Why are unique_ptrs useful?

v If you have many potential exits out of a function, it’s easy
to forget to call delete on all of them
§ unique_ptr will delete its pointer when it falls out of scope
§ Thus, a unique_ptr also helps with exception safety

14

void NotLeaky() {
std::unique_ptr<int> x(new int(5));
...
// lots of code, including several returns
// lots of code, including potential exception throws
...

}

CSE333, Fall 2022L16: C++ Smart Pointers

unique_ptr Operations
#include <memory> // for std::unique_ptr
#include <cstdlib> // for EXIT_SUCCESS

using namespace std;
typedef struct { int a, b; } IntPair;

int main(int argc, char **argv) {
unique_ptr<int> x(new int(5));

int *ptr = x.get(); // Return a pointer to pointed-to object
int val = *x; // Return the value of pointed-to object

// Access a field or function of a pointed-to object
unique_ptr<IntPair> ip(new IntPair);
ip->a = 100;

// Deallocate current pointed-to object and store new pointer
x.reset(new int(1));

ptr = x.release(); // Release responsibility for freeing
delete ptr;
return EXIT_SUCCESS;

}
15

unique2.cc

CSE333, Fall 2022L16: C++ Smart Pointers

Transferring Ownership

v Use reset() and release() to transfer ownership
§ release returns the pointer, sets wrapped pointer to nullptr
§ reset delete’s the current pointer and stores a new one

16

int main(int argc, char **argv) {
unique_ptr<int> x(new int(5));
cout << "x: " << x.get() << endl;

unique_ptr<int> y(x.release()); // x abdicates ownership to y
cout << "x: " << x.get() << endl;
cout << "y: " << y.get() << endl;

unique_ptr<int> z(new int(10));

// y transfers ownership of its pointer to z.
// z's old pointer was delete'd in the process.
z.reset(y.release());

return EXIT_SUCCESS;
}

unique3.cc

CSE333, Fall 2022L16: C++ Smart Pointers

unique_ptrs Cannot Be Copied

v std::unique_ptr has disabled its copy constructor
and assignment operator
§ You cannot copy a unique_ptr, helping maintain “uniqueness”

or “ownership”

17

#include <memory> // for std::unique_ptr
#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char **argv) {
std::unique_ptr<int> x(new int(5)); // OK

std::unique_ptr<int> y(x); // fail – no copy ctor

std::unique_ptr<int> z; // OK – z is nullptr

z = x; // fail – no assignment op

return EXIT_SUCCESS;
}

uniquefail.cc

CSE333, Fall 2022L16: C++ Smart Pointers

unique_ptr and STL

v unique_ptrs can be stored in STL containers
§ Wait, what? STL containers like to make lots of copies of stored

objects and unique_ptrs cannot be copied…

v Move semantics to the rescue!
§ When supported, STL containers will move rather than copy

• unique_ptrs support move semantics

18

CSE333, Fall 2022L16: C++ Smart Pointers

Aside: Copy Semantics

v Assigning values typically means making a copy
§ Sometimes this is what you want

• e.g. assigning a string to another makes a copy of its value

§ Sometimes this is wasteful
• e.g. assigning a returned string goes through a temporary copy

19

std::string ReturnFoo(void) {
std::string x("foo");
return x; // this return might copy

}

int main(int argc, char **argv) {
std::string a("hello");
std::string b(a); // copy a into b

b = ReturnFoo(); // copy return value into b

return EXIT_SUCCESS;
}

copysemantics.cc

CSE333, Fall 2022L16: C++ Smart Pointers

Move Semantics (added in C++11)

v “Move semantics”
move values from
one object to
another without
copying (“stealing”)
§ Useful for optimizing

away temporary copies
§ A complex topic that

uses things called
“rvalue references”
• Mostly beyond the

scope of 333 this
quarter

20

std::string ReturnFoo(void) {
std::string x("foo");
// this return might copy
return x;

}

int main(int argc, char **argv) {
std::string a("hello");

// moves a to b
std::string b = std::move(a);
std::cout << "a: " << a << std::endl;
std::cout << "b: " << b << std::endl;

// moves the returned value into b
b = std::move(ReturnFoo());
std::cout << "b: " << b << std::endl;

return EXIT_SUCCESS;
}

movesemantics.cc

CSE333, Fall 2022L16: C++ Smart Pointers

Transferring Ownership via Move

v unique_ptr supports move semantics
§ Can “move” ownership from one unique_ptr to another

• Behavior is equivalent to the “release-and-reset” combination

21

int main(int argc, char **argv) {
unique_ptr<int> x(new int(5));
cout << "x: " << x.get() << endl;

unique_ptr<int> y = std::move(x); // x abdicates ownership to y
cout << "x: " << x.get() << endl;
cout << "y: " << y.get() << endl;

unique_ptr<int> z(new int(10));

// y transfers ownership of its pointer to z.
// z's old pointer was delete'd in the process.
z = std::move(y);

return EXIT_SUCCESS;
}

unique4.cc

CSE333, Fall 2022L16: C++ Smart Pointers

unique_ptr and STL Example

23

int main(int argc, char **argv) {
std::vector<std::unique_ptr<int> > vec;

vec.push_back(std::unique_ptr<int>(new int(9)));
vec.push_back(std::unique_ptr<int>(new int(5)));
vec.push_back(std::unique_ptr<int>(new int(7)));

// z gets a copy of int value pointed to by vec[1]
int z = *vec[1];
std::cout << "z is: " << z << std::endl;

// won’t compile! Cannot copy unique_ptr
std::unique_ptr<int> copied = vec[1]; // hmmm...

// Works! vec[1] now wraps a nullptr
std::unique_ptr<int> moved = std::move(vec[1]);
std::cout << "*moved: " << *moved << std::endl;
std::cout << "vec[1].get(): " << vec[1].get() << std::endl;

return EXIT_SUCCESS;
}

uniquevec.cc

CSE333, Fall 2022L16: C++ Smart Pointers

unique_ptr and “<”

v A unique_ptr implements some comparison
operators, including operator<
§ However, it doesn’t invoke operator< on the pointed-to

objects
• Instead, it just promises a stable, strict ordering (probably based on

the pointer address, not the pointed-to-value)

§ So to use sort() on vectors, you want to provide it with a
comparison function

24

CSE333, Fall 2022L16: C++ Smart Pointers

unique_ptr and STL Sorting

25

using namespace std;
bool sortfunction(const unique_ptr<int> &x,

const unique_ptr<int> &y) { return *x < *y; }
void printfunction(unique_ptr<int> &x) { cout << *x << endl; }

int main(int argc, char **argv) {
vector<unique_ptr<int> > vec;
vec.push_back(unique_ptr<int>(new int(9)));
vec.push_back(unique_ptr<int>(new int(5)));
vec.push_back(unique_ptr<int>(new int(7)));

// buggy: sorts based on the values of the ptrs
sort(vec.begin(), vec.end());
cout << "Sorted:" << endl;
for_each(vec.begin(), vec.end(), &printfunction);

// better: sorts based on the pointed-to values
sort(vec.begin(), vec.end(), &sortfunction);
cout << "Sorted:" << endl;
for_each(vec.begin(), vec.end(), &printfunction);

return EXIT_SUCCESS;
}

uniquevecsort.cc

CSE333, Fall 2022L16: C++ Smart Pointers

unique_ptr, “<”, and maps

v Similarly, you can use unique_ptrs as keys in a map
§ Reminder: a map internally stores keys in sorted order

• Iterating through the map iterates through the keys in order

§ By default, “<” is used to determine ordering
• You must specify a comparator when constructing the map to get a

meaningful sorted order using “<” of unique_ptrs

v Compare (the 3rd template) parameter:
§ “A binary predicate that takes two element keys as arguments

and returns a bool. This can be a function pointer or a function
object.”
• bool fptr(T1& lhs, T1& rhs); OR member function
bool operator() (const T1& lhs, const T1& rhs);

26

CSE333, Fall 2022L16: C++ Smart Pointers

unique_ptr and map Example

27

struct MapComp {
bool operator()(const unique_ptr<int> &lhs,

const unique_ptr<int> &rhs) const { return *lhs < *rhs; }
};

int main(int argc, char **argv) {
map<unique_ptr<int>, int, MapComp> a_map; // Create the map

unique_ptr<int> a(new int(5)); // unique_ptr for key
unique_ptr<int> b(new int(9));
unique_ptr<int> c(new int(7));

a_map[std::move(a)] = 25; // move semantics to get ownership
a_map[std::move(b)] = 81; // of unique_ptrs into the map.
a_map[std::move(c)] = 49; // a, b, c hold NULL after this.

map<unique_ptr<int>,int>::iterator it;
for (it = a_map.begin(); it != a_map.end(); it++) {

std::cout << "key: " << *(it->first);
std::cout << " value: " << it->second << std::endl;

}
return EXIT_SUCCESS;

}

uniquemap.cc

CSE333, Fall 2022L16: C++ Smart Pointers

unique_ptr and Arrays

v unique_ptr can store arrays as well
§ Will call delete[] on destruction

28

#include <memory> // for std::unique_ptr
#include <cstdlib> // for EXIT_SUCCESS

using namespace std;

int main(int argc, char **argv) {
unique_ptr<int[]> x(new int[5]);

x[0] = 1;
x[2] = 2;

return EXIT_SUCCESS;
}

unique5.cc

CSE333, Fall 2022L16: C++ Smart Pointers

std::shared_ptr

v shared_ptr is similar to unique_ptr but we allow
shared objects to have multiple owners
§ The copy/assign operators are not disabled and increment or

decrement reference counts as needed
• After a copy/assign, the two shared_ptr objects point to the same

pointed-to object and the (shared) reference count is 2

§ When a shared_ptr is destroyed, the reference count is
decremented
• When the reference count hits 0, we delete the pointed-to object!

§ Allows us to create complex linked structures (double-linked lists,
graphs, etc.) at the cost of maintaining reference counts

29

CSE333, Fall 2022L16: C++ Smart Pointers

What is Reference Counting?

v Idea: associate a reference count with each object
§ Reference count holds number of references (pointers) to the

object
§ Adjusted whenever pointers are changed:

• Increase by 1 each time we have a new pointer to an object
• Decrease by 1 each time a pointer to an object is removed

§ When reference counter decreased to 0, no more pointers to the
object, so delete it (automatically)

v Used by C++ shared_ptr, not used in general for C++
memory management

30

CSE333, Fall 2022L16: C++ Smart Pointers

Reference Counting

v Suppose for the moment that we have a new C++ -like
language that uses reference counting for heap data

v As in C++, a struct is a type with public fields, so we can
implement lists of integers using the following Node type

v The reference counts would be handled behind the scenes
by the memory manager code – they are not accessible to
the programmer

31

struct Node {
int payload; // node payload
Node * next; // next Node or nullptr

};

CSE333, Fall 2022L16: C++ Smart Pointers

Example 1

v Let’s execute the following code. Heap data is shown
using rectangles; associated reference counts with ovals

32

Node * p = new Node();
Node * q = new Node();
Node * r = p;
q->next = new Node();
p = nullptr;
r = nullptr;
q = nullptr;

p

q

r

CSE333, Fall 2022L16: C++ Smart Pointers

Example 1

v Let’s execute the following code. Heap data is shown
using rectangles; associated reference counts with ovals

33

Node * p = new Node();
Node * q = new Node();
Node * r = p;
q->next = new Node();
p = nullptr;
r = nullptr;
q = nullptr;

p

q

r

1

CSE333, Fall 2022L16: C++ Smart Pointers

Example 1

v Let’s execute the following code. Heap data is shown
using rectangles; associated reference counts with ovals

34

Node * p = new Node();
Node * q = new Node();
Node * r = p;
q->next = new Node();
p = nullptr;
r = nullptr;
q = nullptr;

p

q

r

1

1

CSE333, Fall 2022L16: C++ Smart Pointers

Example 1

v Let’s execute the following code. Heap data is shown
using rectangles; associated reference counts with ovals

35

Node * p = new Node();
Node * q = new Node();
Node * r = p;
q->next = new Node();
p = nullptr;
r = nullptr;
q = nullptr;

p

q

r

2

1

CSE333, Fall 2022L16: C++ Smart Pointers

Example 1

v Let’s execute the following code. Heap data is shown
using rectangles; associated reference counts with ovals

36

Node * p = new Node();
Node * q = new Node();
Node * r = p;
q->next = new Node();
p = nullptr;
r = nullptr;
q = nullptr;

p

q

r

2

1 1

CSE333, Fall 2022L16: C++ Smart Pointers

Example 1

v Let’s execute the following code. Heap data is shown
using rectangles; associated reference counts with ovals

37

Node * p = new Node();
Node * q = new Node();
Node * r = p;
q->next = new Node();
p = nullptr;
r = nullptr;
q = nullptr;

p

q

r

1

1 1

CSE333, Fall 2022L16: C++ Smart Pointers

Example 1

v Let’s execute the following code. Heap data is shown
using rectangles; associated reference counts with ovals

38

Node * p = new Node();
Node * q = new Node();
Node * r = p;
q->next = new Node();
p = nullptr;
r = nullptr;
q = nullptr;

p

q

r

0

1 1

CSE333, Fall 2022L16: C++ Smart Pointers

Example 1

v Let’s execute the following code. Heap data is shown
using rectangles; associated reference counts with ovals

39

Node * p = new Node();
Node * q = new Node();
Node * r = p;
q->next = new Node();
p = nullptr;
r = nullptr;
q = nullptr;

p

q

r

0 10

CSE333, Fall 2022L16: C++ Smart Pointers

Example 2

v Similar to the previous code, but slightly different

40

Node * q = new Node();
Node * r = new Node();
q->next = r;
r->next = q;
r = nullptr;
q = nullptr;

q

r

CSE333, Fall 2022L16: C++ Smart Pointers

Example 2

v Similar to the previous code, but slightly different

41

Node * q = new Node();
Node * r = new Node();
q->next = r;
r->next = q;
r = nullptr;
q = nullptr;

q

r

1

CSE333, Fall 2022L16: C++ Smart Pointers

Example 2

v Similar to the previous code, but slightly different

42

Node * q = new Node();
Node * r = new Node();
q->next = r;
r->next = q;
r = nullptr;
q = nullptr;

q

r

1 1

CSE333, Fall 2022L16: C++ Smart Pointers

Example 2

v Similar to the previous code, but slightly different

43

Node * q = new Node();
Node * r = new Node();
q->next = r;
r->next = q;
r = nullptr;
q = nullptr;

q

r

1 2

CSE333, Fall 2022L16: C++ Smart Pointers

Example 2

v Similar to the previous code, but slightly different

44

Node * q = new Node();
Node * r = new Node();
q->next = r;
r->next = q;
r = nullptr;
q = nullptr;

q

r

2 2

CSE333, Fall 2022L16: C++ Smart Pointers

Example 2

v Similar to the previous code, but slightly different

45

Node * q = new Node();
Node * r = new Node();
q->next = r;
r->next = q;
r = nullptr;
q = nullptr;

q

r

2 1

CSE333, Fall 2022L16: C++ Smart Pointers

Example 2

v Similar to the previous code, but slightly different

46

Node * q = new Node();
Node * r = new Node();
q->next = r;
r->next = q;
r = nullptr;
q = nullptr;

q

r

1 1
Memory leak!

CSE333, Fall 2022L16: C++ Smart Pointers

Review std::shared_ptr

v shared_ptr is similar to unique_ptr but we allow
shared objects to have multiple owners
§ The copy/assign operators are not disabled and they increment or

decrement reference counts as needed
• After a copy/assign, the two shared_ptr objects point to the same

pointed-to object and the (shared) reference count is 2

§ When a shared_ptr is destroyed, the reference count is
decremented
• When the reference count hits 0, we delete the pointed-to object!

§ Allows us to create complex linked structures (double-linked lists,
graphs, etc.) at the cost of maintaining reference counts

47

CSE333, Fall 2022L16: C++ Smart Pointers

shared_ptr Example

48

#include <cstdlib> // for EXIT_SUCCESS
#include <iostream> // for std::cout, std::endl
#include <memory> // for std::shared_ptr

int main(int argc, char **argv) {
std::shared_ptr<int> x(new int(10)); // ref count: 1

// temporary inner scope with local y (!)
{

std::shared_ptr<int> y = x; // ref count: 2
std::cout << *y << std::endl;

} // exit scope, y deleted

std::cout << *x << std::endl; // ref count: 1

return EXIT_SUCCESS;
} // ref count: 0

sharedexample.cc

CSE333, Fall 2022L16: C++ Smart Pointers

shared_ptrs and STL Containers

v Even simpler than unique_ptrs
§ Safe to store shared_ptrs in containers, since copy & assign

maintain a shared reference count

49

vector<std::shared_ptr<int> > vec;

vec.push_back(std::shared_ptr<int>(new int(9)));
vec.push_back(std::shared_ptr<int>(new int(5)));
vec.push_back(std::shared_ptr<int>(new int(7)));

int &z = *vec[1];
std::cout << "z is: " << z << std::endl;

std::shared_ptr<int> copied = vec[1]; // works!
std::cout << "*copied: " << *copied << std::endl;

std::shared_ptr<int> moved = std::move(vec[1]); // works!
std::cout << "*moved: " << *moved << std::endl;
std::cout << "vec[1].get(): " << vec[1].get() << std::endl;

sharedvec.cc

CSE333, Fall 2022L16: C++ Smart Pointers

shared_ptrs Must Share Nicely

v A warning: shared_ptr reference counting works as
long as the shared references to the same object result
from making copies of existing shared_ptr values

v If we create multiple shared_ptrs using the same raw
pointer, the shared_ptrs will have separate reference
counts. When any of those reference counters decrement
to 0, that shared_ptr will delete the owned object,
and the other shared_ptrs now have dangling pointers
– which they will later (double) delete! Bug!!

50

CSE333, Fall 2022L16: C++ Smart Pointers

shared_ptr Warning

51

#include <cstdlib> // for EXIT_SUCCESS
#include <iostream> // for std::cout, std::endl
#include <memory> // for std::shared_ptr

int main(int argc, char **argv) {
std::shared_ptr<int> x(new int(10)); // ref count: 1
std::shared_ptr<int> y(x); // ref count: 2

int *p = new int(10);
std::shared_ptr<int> xbug(p); // ref count: 1
std::shared_ptr<int> ybug(p); // separate ref count: 1

return EXIT_SUCCESS;
} // x and y ref count: 0 – ok delete

// xbug and ybug ref counts both 0
// both try to delete p
// -- double-delete error!

sharedbug.cc

CSE333, Fall 2022L16: C++ Smart Pointers

Cycle of shared_ptrs

v What happens when we delete head?
52

#include <cstdlib>
#include <memory>

using std::shared_ptr;

struct A {
shared_ptr<A> next;
shared_ptr<A> prev;

};

int main(int argc, char **argv) {
shared_ptr<A> head(new A());
head->next = shared_ptr<A>(new A());
head->next->prev = head;

return EXIT_SUCCESS;
}

strongcycle.cc

next

prev

next

prev

head

∅

∅

12

CSE333, Fall 2022L16: C++ Smart Pointers

Cycle of shared_ptrs

v What happens when we delete head? Nodes
unreachable but not deleted because ref counts > 0 53

#include <cstdlib>
#include <memory>

using std::shared_ptr;

struct A {
shared_ptr<A> next;
shared_ptr<A> prev;

};

int main(int argc, char **argv) {
shared_ptr<A> head(new A());
head->next = shared_ptr<A>(new A());
head->next->prev = head;

return EXIT_SUCCESS;
}

strongcycle.cc

next

prev

next

prev

head

∅

∅

11

CSE333, Fall 2022L16: C++ Smart Pointers

std::weak_ptr

v weak_ptr is similar to a shared_ptr but doesn’t
affect the reference count
§ Can only “point to” an object that is managed by a shared_ptr
§ Not really a pointer – can’t actually dereference unless you “get”

its associated shared_ptr
§ Because it doesn’t influence the reference count, weak_ptrs

can become “dangling”
• Object referenced may have been delete’d
• But you can check to see if the object still exists

v Can be used to break our cycle problem!

54

CSE333, Fall 2022L16: C++ Smart Pointers

Breaking the Cycle with weak_ptr

v Now what happens when we delete head?
55

#include <cstdlib>
#include <memory>

using std::shared_ptr;
using std::weak_ptr;

struct A {
shared_ptr<A> next;
weak_ptr<A> prev;

};

int main(int argc, char **argv) {
shared_ptr<A> head(new A());
head->next = shared_ptr<A>(new A());
head->next->prev = head;

return EXIT_SUCCESS;
}

weakcycle.cc

next

prev

next

prev

head

∅

∅

11

CSE333, Fall 2022L16: C++ Smart Pointers

Breaking the Cycle with weak_ptr

v Now what happens when we delete head? Ref counts
go to 0 and nodes deleted! 56

#include <cstdlib>
#include <memory>

using std::shared_ptr;
using std::weak_ptr;

struct A {
shared_ptr<A> next;
weak_ptr<A> prev;

};

int main(int argc, char **argv) {
shared_ptr<A> head(new A());
head->next = shared_ptr<A>(new A());
head->next->prev = head;

return EXIT_SUCCESS;
}

weakcycle.cc

next

prev

next

prev

head

∅

∅

00

CSE333, Fall 2022L16: C++ Smart Pointers

Using a weak_ptr

57

#include <cstdlib> // for EXIT_SUCCESS
#include <iostream> // for std::cout, std::endl
#include <memory> // for std::shared_ptr, std::weak_ptr

int main(int argc, char **argv) {
std::weak_ptr<int> w;

{ // temporary inner scope with local x
std::shared_ptr<int> x;
{ // temporary inner-inner scope with local y

std::shared_ptr<int> y(new int(10));
w = y; // weak ref; ref count for “10” node is same
x = w.lock(); // get "promoted" shared_ptr, ref cnt = 2
std::cout << *x << std::endl;

} // y deleted; ref count now 1
std::cout << *x << std::endl;

} // x deleted; ref count now 0; mem freed
std::shared_ptr<int> a = w.lock(); // nullptr
std::cout << a << std::endl; // output is 0 (null)

return EXIT_SUCCESS;
}

usingweak.cc

CSE333, Fall 2022L16: C++ Smart Pointers

Reference Counting Perspective

v Reference counting is a technique for managing resources
by counting and storing number of references to an object
(i.e., # of pointers that hold the address of the object)
§ Increment or decrement count as pointers are changed
§ Delete the object when reference count decremented to 0

v Works great! But…
§ Bunch of extra overhead on every pointer operation
§ Cannot reclaim linked objects with circular references
§ Not general enough for automatic memory management (need

automatic garbage collection as in Java), but when it’s appropriate
it’s a clean solution for resource management and cleanup
• ex.: directory links to files in Linux – delete file when link count = 0!

58

CSE333, Fall 2022L16: C++ Smart Pointers

Summary

v A unique_ptr takes ownership of a pointer
§ Cannot be copied, but can be moved
§ get() returns a copy of the pointer, but is dangerous to use;

better to use release() instead
§ reset() deletes old pointer value and stores a new one

v A shared_ptr allows shared objects to have multiple
owners by doing reference counting
§ deletes an object once its reference count reaches zero

v A weak_ptr works with a shared object but doesn’t
affect the reference count
§ Can’t actually be dereferenced, but can check if the object still

exists and can get a shared_ptr from the weak_ptr if it does
59

