W UNIVERSITY of WASHINGTON L10: C++ Intro

C++ Intro
CSE 333 Fall 2022

Instructor: Hal Perkins

Teaching Assistants:

Nour Ayad Frank Chen
Dylan Hartono Humza Lala
Bennedict Soesanto Chanh Truong

Tanay Vakharia Timmy Yang

Nick Durand
Kenzie Mihardja
Justin Tysdal

CSE333, Fall 2022

W UNIVERSITY of WASHINGTON

Administrivia

+» Exercise 7 posted yesterday, due Monday

4

>

= POSIX I/O for directories and reading data from files

= Read a directory and open/copy text files found there

Homework 2 due in two weeks (10/27)

L10: C++ Intro

CSE333, Fall 2022

- Copy exactly and only the bytes in the file(s). No extra output, no

“formatting”, no any other transformations.

Good warm-up for...

File system crawler, indexer, and search engine

Spec posted now

Starter files will be pushed out this afternoon

Demo in class today!

Now?

CSE333, Fall 2022

W UNIVERSITY of WASHINGTON L10: C++ Intro

Administrivia (Monday)

- New exercise out today — First C++ program: read a
number and print its factors

®" Due Wed. morning

» HW2 —how’s it look? Be sure to make good progress this
week

W UNIVERSITY of WASHINGTON L10: C++ Intro CSE333, Fall 2022

If things are starting to get difficult...

+» We're starting week 4 of the quarter and for most of us,
so far, so good

» But some of us are dealing with unexpected things
(illness, personal situations) and maybe the world doesn’t
yet seem entirely back to “normal” (whatever that is)

» If you’re having problems, please reach out to course
staff, Allen School Advising, UW Counseling Center, other
resources, etc.

= Say something if you could use some help, or just need to talk —
don’t bottle it up and hope that it will magically get better

+ Try to stay on schedule — don’t plan in advance to use late
days, etc. and speak up if that’s not working.

W UNIVERSITY of WASHINGTON L10: C++ Intro CSE333, Fall 2022

Today’s Goals

% An introduction to C++
= Some comparisons to C and shortcomings that C++ addresses
" Give you a perspective on how to learn C++
= Kick the tires and look at some code

« Advice: You must read related sections in the C++ Primer

" |t’s hard to learn the “why is it done this way” from reference
docs, and even harder to learn from random stuff on the web

= Lectures and examples will introduce the main ideas, but aren’t
everything you’ll wanrt need to understand

= 3 hours of web searching might save you 20 min. of reading in the
Primer — but is that a good tradeoff?

= And free access through UW libraries (O’Reilly books online)

W UNIVERSITY of WASHINGTON L10: C++ Intro CSE333, Fall 2022

C

+» We had to work hard to mimic encapsulation, abstraction

= Encapsulation: hiding implementation details

- Used header file conventions and the “static” specifier to separate
private functions from public functions

- Cast structures to (void*) to hide implementation-specific details
= Abstraction: associating behavior with encapsulated state

- Function that operate on a LinkedList were not really tied to the
linked list structure

- We passed a linked list to a function, rather than invoking a method
on a linked list instance

W UNIVERSITY of WASHINGTON L10: C++ Intro CSE333, Fall 2022

C++

+» A major addition is support for classes and objects!

= Classes
- Public, private, and protected methods and instance variables
« (multiple!) inheritance

= Polymorphism

- Static polymorphism: multiple functions or methods with the same
name, but different argument types (overloading)

— Works for all functions, not just class members

- Dynamic (subtype) polymorphism: derived classes can override
methods of parents, and methods will be dispatched correctly

W UNIVERSITY of WASHINGTON L10: C++ Intro CSE333, Fall 2022

C

+» We had to emulate generic data structures
= Generic linked list using void~* payload

= Pass function pointers to generalize different “methods” for data
structures

- Comparisons, deallocation, pickling up state, etc.

CSE333, Fall 2022

W UNIVERSITY of WASHINGTON L10: C++ Intro

C++

+» Supports templates to facilitate generic data types

" Parametric polymorphism — same idea as Java generics, but
different in details, particularly implementation

" To declare that x is a vector of ints: vector<int> x;
= To declare that x is a vector of strings: vector<string> x;

" To declare that x is a vector of (vectors of floats):
vector<vector<float>> x;

W UNIVERSITY of WASHINGTON L10: C++ Intro CSE333, Fall 2022

C

+» We had to be careful about namespace collisions

= Cdistinguishes between external and internal linkage

- Use static to prevent a name from being visible outside a source
file (as close as C gets to “private”)

- Otherwise, name is global and visible everywhere

= We used naming conventions to help avoid collisions in the global
namespace

- e.g. LLIteratorNext vs. HTIteratorNext, etc.

10

W UNIVERSITY of WASHINGTON

L10: C++ Intro

CSE333, Fall 2022

C++

+» Permits a module to define its own namespace!

"= The linked list module could define an “IL1.” namespace while the
hash table module could define an “HT” namespace

= Both modules could define an Iterator class

- One would be globally named LL: : Tterator

- The other would be globally named HT: : Iterator

+ Classes also allow duplicate names without collisions

= Namespaces group and isolate names in collections of classes and
other “global” things (somewhat like Java packages)

- Entire C++ standard library is in a namespace std (more later...)

11

W UNIVERSITY of WASHINGTON L10: C++ Intro CSE333, Fall 2022

C

+» C does not provide any standard data structures

= We had to implement our own linked list and hash table

= As a C programmer, you often reinvent the wheel... poorly
- Maybe if you're clever you’ll use somebody else’s libraries

- But C’s lack of abstraction, encapsulation, and generics means you'll
probably end up tinkering with them or tweak your code to use them

12

W UNIVERSITY of WASHINGTON L10: C++ Intro

C++

% The C++ standard library is huge!

= Generic containers: bitset, queue, list, associative array
(including hash table), deque, set, stack, and vector

- And iterators for most of these
= A stringclass: hides the implementation of strings

= Streams: allows you to stream data to and from objects,
consoles, files, strings, and so on

= And more...

CSE333, Fall 2022

13

W UNIVERSITY of WASHINGTON L10: C++ Intro CSE333, Fall 2022

C

+ Error handling is a pain
= Have to define error codes and return them

" Customers have to understand error code conventions and need
to constantly test return values

= eqg.ifa() callsb (), whichcalls c ()

- a depends on b to propagate an error in ¢ back to it

14

CSE333, Fall 2022

W UNIVERSITY of WASHINGTON L10: C++ Intro

C++

+» Supports exceptions!
" try/throw/catch
= |f used with discipline, can simplify error processing
- But, if used carelessly, can complicate memory management

« Consider: a () callsb (), which calls ¢ ()

— If ¢ () throws an exception that b () doesn’t catch, you might not get a
chance to clean up resources allocated inside b ()

" But much C++ code still needs to work with C & old C++ libraries
that are not exception-safe, so still uses return codes, exit(), etc.

- We won’t use (and Google style guide doesn’t use either)

15

W UNIVERSITY of WASHINGTON L10: C++ Intro CSE333, Fall 2022

Some Tasks Still Hurt in C++

«» Memory management

= C++ has no garbage collector

- You have to manage memory allocation and deallocation and track
ownership of memory

- |t’s still possible to have leaks, double frees, and so on
= But there are some things that help

- “Smart pointers”
— Classes that encapsulate pointers and track reference counts

— Deallocate memory when the reference count goes to zero

- C++’s destructors permit a pattern known as “Resource Allocation Is
Initialization” (RAII) (terrible name but super useful idea)

— Useful for releasing memory, locks, database transactions, and more

16

W UNIVERSITY of WASHINGTON L10: C++ Intro CSE333, Fall 2022

Some Tasks Still Hurt in C++

+» C++ doesn’t guarantee type or memory safety

" You can still:

Forcibly cast pointers between incompatible types

Walk off the end of an array and smash memory

Have dangling pointers

Conjure up a pointer to an arbitrary address of your choosing

17

W UNIVERSITY of WASHINGTON L10: C++ Intro

C++ Has Many, Many Features

+ Operator overloading

® Your class can define methods for handling “+”, “=>", etc.

» Object constructors, destructors

= Particularly handy for stack-allocated objects

» Reference types

= True call-by-reference instead of always call-by-value

» Advanced Objects

= Multiple inheritance, virtual base classes, dynamic dispatch

CSE333, Fall 2022

18

W UNIVERSITY of WASHINGTON L10: C++ Intro CSE333, Fall 2022

How to Think About C++

Set of styles
and ways to
use C++

Good styles
and robust
engineering

practices Set of styles

and ways to
use C

19

W UNIVERSITY of WASHINGTON L10: C++ Intro CSE333, Fall 2022

Or...

In the hands of a disciplined But if you’re not so
programmer, C++is a disciplined about how you
powerful tool use C++...

20

W UNIVERSITY of WASHINGTON L10: C++ Intro CSE333, Fall 2022

Hello World in C
helloworld.c

[#include <stdio.h> // for printf ()
#include <stdlib.h> // for EXIT SUCCESS

"\

int main(int argc, char** argv) {
printf ("Hello, World!\n");
return EXIT SUCCESS;

}

\ S

« You never had a chance to write this!

= Compile with gcc:

gcc -Wall -g -std=cl/7 -o hello helloworld.c

" You should be able to describe in detail everything in this code

21

W UNIVERSITY of WASHINGTON L10: C++ Intro CSE333, Fall 2022

Hello World in C++

r#include <iostream>
#include <cstdlib>

helloworld.cc

"\

int main(int argc, char** argv) {
std::cout << "Hello, World!" << std::endl;
return EXIT SUCCESS;

}

\ S

+ Looks simple enough...

= Compile with g++ instead of gcc:

g++ -Wall -g -std=c++17 -o helloworld helloworld.cc

= Let’s walk through the program step-by-step to highlight some
differences

22

W UNIVERSITY of WASHINGTON L10: C++ Intro CSE333, Fall 2022

Hello World in C++

\ﬁiﬂ§lude <iostream>
#include <cstdlib>

helloworld.cc

"\

int main(int argc, char** argv) {
std::cout << "Hello, World!" << std::endl;
return EXIT SUCCESS;

}

\ S

» l1ostreamis part of the C++ standard library

= Note: you don’t write “.h” when you include C++ standard library
headers
- But you do for local headers (e.g. # include "11.h")

" jostreamdeclares stream object instances in the “std”
namespace

« e.g. std::cin, std::cout,std::cerr

23

W UNIVERSITY of WASHINGTON L10: C++ Intro CSE333, Fall 2022

Hello World in C++

r]]
#include <jostream>

ngaélude <cstdl£§z:>

int main(int argc, char** argv) {
std::cout << "Hello, World!" << std::endl;
return EXIT SUCCESS;

}

\ S

helloworld.cc

"\

% cstdlibis the Cstandard library’s stdlib.h

= Nearly all C standard library functions are available to you
- For Cheader foo.h,youshould #include <cfoo>

" Weinclude it here for EXIT SUCCESS, as usual

24

W UNIVERSITY of WASHINGTON L10: C++ Intro

Hello World in C++

helloworld.cc

r#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
<< "Hello, World!" << std::endl;
return EXIT SUCCESS;
}

\

"\

J

CSE333, Fall 2022

» std::cout isthe “cout” object instance declared by

iostream, living within the “std” namespace
= C++'s name for stdout

" std:cout isanobject of class ostream

« http://www.cplusplus.com/reference/ostream/ostream/

= Used to format and write output to the console

" The entire standard library is in the namespace std

25

http://www.cplusplus.com/reference/ostream/ostream/

W UNIVERSITY of WASHINGTON L10: C++ Intro CSE333, Fall 2022

Hello World in C++

r#include <iostream>
#include <cstdlib>

helloworld.cc

"\

int main(int argc, char** argv) {
<< "Hello, World!" << std::endl;
return EXIT SUCCESS;
}

\ S

+» C++ distinguishes between objects and primitive types

" These include the familiar ones from C:
char, short, int, long, £loat, double, etc.

= C++ also defines bool as a primitive type (woo-hoo!)
- Useitl!

« (but bool and int values silently convert types for compatiblity)

26

W UNIVERSITY of WASHINGTON L10: C++ Intro CSE333, Fall 2022

Hello World in C++
helloworld.cc

4 N

#include <iostream>
#include <cstdlib>

int main(int_gargc, char** argv) {
std::cout(;f)"Hello, World!" << std::endl;
return EXIT SUCCESS;

}

\ S

/

» “<<”is an operator defined by the C++ language

D)

= Defined in C as well: usually it bit-shifts integers (in C/C++)

= C++ allows classes and functions to overload operators!
- Here, the ostream class overloads “<<”

- j.e. it defines different member functions (methods) that are invoked
when an ostream is the left-hand side of the << operator

27

W UNIVERSITY of WASHINGTON L10: C++ Intro CSE333, Fall 2022

Hello World in C++

r#include <iostream>
#include <cstdlib>

int main(int_gargc, char** argv) {

std::cout(;f)"Hello, World!" << std::endl;
return EXIT SUCCESS;

}

\ S

helloworld.cc

"\

%+ ostream has many different methods to handle <<
= The functions differ in the type of the right-hand side (RHS) of <<

= e.g.if youdo [std::cout << "foo'";] then C++ invokes
cout’s function to handle << with RHS char*

28

W UNIVERSITY of WASHINGTON L10: C++ Intro CSE333, Fall 2022

Hello World in C++

r#include <iostream>
#include <cstdlib>

helloworld.cc

"\

int main (int argc, char** argv) ({

<EE§E:cout << "Hello, World!">X< std::endl;
return EXIT SUCCESS;

}

\ S

« The ostream class’ member functions that handle <<
return a reference to themselves
- When[std: :cout << "Hello, World!" ;]is evaluated:

- A member function of the std: : cout object is invoked

- |t buffers the string "Hello, World!" for the console

- And it returns a referenceto std: : cout

29

W UNIVERSITY of WASHINGTON L10: C++ Intro CSE333, Fall 2022

Hello World in C++

r#include <lostream>
#include <cstdlib>

helloworld.cc

"\

int main(int argc, char** argv) {
std::cout << "Hello, World!"(EEZ%td::eﬁEIZ)
return EXIT SUCCESS;

}

\ S

+» Next, another member function on std: : cout is
invoked to handle << with RHS std: :endl

" std::endl isa pointer to a “manipulator” function

- This manipulator function writes newline (' \n') to the ostreamit
is invoked on and then flushes the ostream’s buffer

- This enforces that something is printed to the console at this point

30

W UNIVERSITY of WASHINGTON L10: C++ Intro CSE333, Fall 2022

Wow...

helloworld.cc

4 N

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
std::cout << "Hello, World!"(EEZ}td::quIZ)
return EXIT SUCCESS;

}

\ S

+ You should be surprised and scared at this point

- Once you mix everything together (templates, operator overloading,
method overloading, generics, multiple inheritance), it can get really
hard to know what’s actually happening!

31

W UNIVERSITY of WASHINGTON L10: C++ Intro CSE333, Fall 2022

Let’s Refine It a Bit

helloworld2.cc
N

- .
#include <iostream>
#include Locstdlib>

@lude <strinD

using namespace std;

int main(int argc, char** argv) {
string hello("Hello, World!");
cout << hello << endl;
return EXIT SUCCESS;

}

\. J

% C++’s standard library hasa std: : st ring class

" Include the st ring header to use it

- Seems to be automatically included in 1ostream on CSE Linux
environment (C++11) — but include it explicitly anyway if you use it

" http://www.cplusplus.com/reference/string/

32

http://www.cplusplus.com/reference/string/

W UNIVERSITY of WASHINGTON L10: C++ Intro CSE333, Fall 2022

Let’s Refine It a Bit

helloworld2.cc
N

(#include <iostream>
#include <cstdlib>
#include <string>

CEEE@Q namespace SE§2:>

int main(int argc, char** argv) {
string hello("Hello, World!");
cout << hello << endl;
return EXIT SUCCESS;

}

\. J

+ The using keyword introduces a namespace (or part of)
into the current region

: [using namespace Std;] imports all names from std: :

= [using std: :Cout;]imports only std: :cout
(used as cout)

33

W UNIVERSITY of WASHINGTON L10: C++ Intro CSE333, Fall 2022

Let’s Refine It a Bit

helloworld2.cc
N

(#include <iostream>
#include <cstdlib>
#include <string>

using namespace std;
int main(int argc, char** argv) {

@ ello("Hello, World!");
—
@ < hello <<

return EXIT SUCCESS;

}

\. J

+ Benefits of [using namespace Std;]

= Wecannowreferto std::stringasstring, std: :cout
as cout,and std: :endl as endl

- Google style guide says never use using namespace, onlyusing
for individual items; but for 333 using namespace std; isok

34

W UNIVERSITY of WASHINGTON L10: C++ Intro CSE333, Fall 2022

Let’s Refine It a Bit

helloworld2.cc
N

(#include <iostream>
#include <cstdlib>
#include <string>

using namespace std;

int main(int argc, char** argv) {
string hello ('Hello, World!");
cout << hello << endl;
return EXIT SUCCESS;

}

\. J

+~ Here we are instantiating a std: : string object on the
stack (an ordinary local variable)

" Passing the Cstring "Hello, World!'" toits constructor
method

" hellois deallocated (and its destructor invoked) when main
returns

35

W UNIVERSITY of WASHINGTON L10: C++ Intro CSE333, Fall 2022

Let’s Refine It a Bit

helloworld2.cc
N

(#include <iostream>
#include <cstdlib>
#include <string>

using namespace std;

int main(int argc, char** argv) {
stri lo("Hello, World!");
cout << hello X< endl;
return RXIT SUCCESS;

}

\. J

+» The C++ string library also overloads the << operator

= Defines a function (not an object method) that is invoked when
the LHS is ostreamand the RHS is std: : string

« http://www.cplusplus.com/reference/string/string/operator<</

36

http://www.cplusplus.com/reference/string/string/operator%3c%3c/

W UNIVERSITY of WASHINGTON L10: C++ Intro CSE333, Fall 2022

String Concatenation

concat.cc
~

(#include <iostream>
#include <cstdlib>
#include <string>

using namespace std;
int main(int argc, char** argv) {
string hello("Hello");
hello =Chello +)", World!";
cout << hello << endl;
return EXIT SUCCESS;
k} J

+ The string class overloads the “+” operator

= Creates and returns a new string that is the concatenation of the
LHS and RHS

37

W UNIVERSITY of WASHINGTON L10: C++ Intro CSE333, Fall 2022

String Assighment

concat.cc
~

(#include <iostream>
#include <cstdlib>
#include <string>

using namespace std;

int main(int argc, char** argv) {

string hello ("Hello™);
ello + ", World!";
cout << hello << endl;

return EXIT SUCCESS;

k} J

+ The string class overloads the “=" operator

= Copies the RHS and replaces the string’s contents with it

38

W UNIVERSITY of WASHINGTON L10: C++ Intro CSE333, Fall 2022

String Manipulation

concat.cc
~

(#include <iostream>
#include <cstdlib>
#include <string>

using namespace std;

int main(int argc, char** argv) {
string hello("Hello");
ello = hello + ", World!";
cout << hello << endl;
return EXIT SUCCESS;

k} J

% This statement is complex!

= First “+” creates a string that is the concatenation of hel1o’s
current contentsand ", World!"

"= Then “=" creates a copy of the concatenation to storeinhello

= Without the syntactic sugar:

-[hello.operator=(hello.operator+(", World!"));] 39

W UNIVERSITY of WASHINGTON L10: C++ Intro CSE333, Fall 2022

Stream Manipulators

manip.cc
\

f#include <iostream>
#include <cstdlib>

QEEiiude <ioma@§§2>

using namespace std;

int main(int argc, char** argv) {
cout << "Hi! " << setw(4) << 5 <<« " " <K< 5 << endl;
cout << hex << 16 << " " << 13 << endl;
cout << dec << 16 << " " << 13 << endl;
return EXIT SUCCESS;

U)

+» 1omanip defines a set of stream manipulator functions

= Pass them to a stream to affect formatting

« http://www.cplusplus.com/reference/iomanip/

« http://www.cplusplus.com/reference/ios/

40

http://www.cplusplus.com/reference/iomanip/
http://www.cplusplus.com/reference/ios/

W UNIVERSITY of WASHINGTON L10: C++ Intro CSE333, Fall 2022

Stream Manipulators

manip.cc
\

f#include <iostream>

#include <cstdlib>
#include <iomanip>

using namespace std;

int main(int argc, char** argv) {
cout << "Hi! " << << 5 << " " << 5 << endl;
cout << hex << 16 <L " << 13 << endl;

cout << dec << 16 << " " << 13 << endl;
return EXIT SUCCESS;

U)

» setw (x) sets the width of the next field to x

= Only affects the next thing sent to the output stream (i.e. it is not
persistent)

41

W UNIVERSITY of WASHINGTON L10: C++ Intro CSE333, Fall 2022

Stream Manipulators

manip.cc
\

f#include <iostream>

#include <cstdlib>
#include <iomanip>

using namespace std;

int main(int argc, char** argv) {
cout << "Hi! " << setw(4) << 5H <<« " " <K< 5 << endl;
cout <<<< 16 << " " << 13 << endl;
cout <<<< 16 << " " << 13 << endl;
return EXIT SUCCESS;

J y
+» hex, dec, and oct set the numerical base for integer
output to the stream

= Stays in effect until you set the stream to another base (i.e. it is
persistent)

42

W UNIVERSITY of WASHINGTON L10: C++ Intro CSE333, Fall 2022

C and C++

r#include <cstdio>
#include <cstdlib>

helloworld3.cc

"\

int main(int argc, char** argv) {
printf ("Hello from C!\n");
return EXIT SUCCESS;

}

\ S

% Cis (roughly) a subset of C++
" You can still use print £ —but bad style in ordinary C++ code

= Can mix C and C++ idioms if needed to work with existing code,
but avoid mixing if you can

- Use C++(11)

43

W UNIVERSITY of WASHINGTON L10: C++ Intro CSE333, Fall 2022

Reading

echonum.cc
N

f#include <iostream>
#include <cstdlib>

using namespace std;

int main(int argc, char** argv) {
int num;
cout << "Type a number: ";
cin >> num;
cout << "You typed: " << num << endl;
return EXIT SUCCESS;

U)

% std::cinisan objectinstance of class istream

= Supports the >> operator for “extraction”
- Can be used in conditionals — (std: : cin>>num) is true if
successful
" Hasagetline () method and methods to detect and clear

errors
44

W UNIVERSITY of WASHINGTON L10: C++ Intro CSE333, Fall 2022

Extra Exercise #1

% Write a C++ program that uses stream to:
" Prompt the user to type 5 floats

" Prints them out in opposite order with 4 digits of precision

46

