W UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Fall 2022

The Heap and Structs
CSE 333 Fall 2022

Instructor: Hal Perkins

Teaching Assistants:

Nour Ayad Frank Chen Nick Durand
Dylan Hartono Humza Lala Kenzie Mihardja
Bennedict Soesanto Chanh Truong Justin Tysdal

Tanay Vakharia Timmy Yang

W UNIVERSITY of WASHINGTON

LO4: The Heap, Structs

CSE333, Fall 2022

Administrivia

+» Yet another exercise, ex3, out today, due Fri.. morning

«» HW1 due a week from tomorrow

" You should have looked through it by now and gotten started
= Be sure to read headers carefully while implementing

- Header files / interfaces may not be changed, but ok to add local
“helper” functions in .c files when appropriate

= Pace yourself and make steady progress

- Then you can “walk away” and come back later or the next day with a
fresh look # when things get complicated/weird/buggy

CSE333, Fall 2022

W UNIVERSITY of WASHINGTON LO4: The Heap, Structs

More Administrivia

+» Use gitlab add/commit/push regularly to save work (not
just once at the end of the project)

= Especially after each new part of the project or other unit of work
is done
" Provides backup in case later work clobbers useful things or

computer crashes or ...

 Also very helpful before contacting TA during zoom office hours if you
want help with your code

» Sections tomorrow: visualizing, diagraming, & debugging
memory; including gdb and valgrind, how to use them
effectively, and how to interpret their output.

L)

W UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Fall 2022

Documentation vs Folklore...

+» Documentation:
" man pages, books

= Reference websites: cplusplus.org, man7.org, gcc.gnu.org, etc.

« Folklore:

= Google-ing, stackoverflow, that rando in lab or on zoom

+» Tradeoffs? Relative strengths & weaknesses?

= Discuss

W UNIVERSITY of WASHINGTON

LO4: The Heap, Structs

Lecture Outline

<~ Heap-allocated Memory

" malloc() and free ()

" Memory leaks

+» structsand typedef

CSE333, Fall 2022

W UNIVERSITY of WASHINGTON

LO4: The Heap, Structs

CSE333, Fall 2022

Memory Allocation So Far

+» So far, we have seen two kinds of memory allocation:

-
int counter = 0;

int main(int argc, char** argv) {
counter++;
printf ("count = $d\n", counter);
return 0O;

}

.

// global var N

{)
// local var

(int foo(int a)
int x = a + 1;
return XxX;

}

int vy foo (10); // local var
printf ("y = %d\n",y);
return 0O;

int main(int argc, char** argv) {
("

\} v,

" counter is statically-allocated
« Allocated when program is loaded

- Deallocated when program exits

" 3, X,y are automatically-
allocated

- Allocated when function is called

« Deallocated when function returns

W UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Fall 2022

Why Dynamic Allocation?

« Situations where static and automatic allocation aren’t
sufficient:

= We need memory that persists across multiple function calls but
not for the whole lifetime of the program

= We need more memory than can fit on the stack

= We need memory whose size is not known in advance

— For example, read a file into memory....

(// this is pseudo-C code
char* ReadFile (char* filename) {
int size = GetFileSize (filename) ;
char* buffer = AllocateMem(size) ;

ReadFileIntoBuffer (filename, buffer);
return buffer;

W UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Fall 2022

Dynamic Allocation

+» What we want is dynamically-allocated memory
= Your program explicitly requests a new block of memory
- The language allocates it at runtime, perhaps with help from OS

" Dynamically-allocated memory persists until either:

- Your code explicitly deallocates it (manual memory management)

- A garbage collector collects it (automatic memory management)

+» Crequires you to manually manage memory

= Gives you more control, but causes headaches

W UNIVERSITY of WASHINGTON LO4: The Heap, Structs

CSE333, Fall 2022

The Heap

+» The Heap is a large pool of

available memory used to hold Stack
dynamically-allocated data

" malloc allocates chunks of data in
the Heap; £ree deallocates those

Shared Libraries

chunks
* malloc maintains bookkeeping data I
in the Heap to track allocated blocks iEE el e raE]
Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

0x00...00

W UNIVERSITY of WASHINGTON LO4: The Heap, Structs

CSE333, Fall 2022

Aside: NULL

+» NULL is a memory location that is guaranteed to be
invalid

" |In Con Linux, NULL is 0x0 and an attempt to dereference NULL
causes a segmentation fault

% Useful as an indicator of an uninitialized (or currently
unused) pointer or allocation error

" |t’s better to cause a segfault than to allow the corruption of
memory!

[int main(int argc, char** argv
segfault.c| ™™ (ge gv) |
int* p = NULL;
*p = 1; // causes a segmentation fault
return O;

|}

10

W UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Fall 2022

malloc ()

% General usage: [var = (type*) malloc (size in bytes)]

+» malloc allocates a block of memory of the requested
Size
= Returns a pointer to the first byte of that memory
- And returns NULL if the memory allocation failed!
" You should assume that the memory initially contains garbage

= You'll typically use sizeof to calculate the size you need and
cast the result to the desired pointer type

[// allocate a 10-float array
float* arr = (float*) malloc(l0*sizeof (float)) ;
1f (arr == NULL) {

return errcode;

}

// do stuff with arr

W UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Fall 2022

calloc ()

% General usage:
[var = (type*) calloc (num, bytes per element) J

+» Likemalloc, but also zeros out the block of memory

= Helpful when zero-initialization wanted (but don’t use it to mask
bugs — fix those)

= Slightly slower; but useful for non-performance-critical code or if
you really are planning to zero out the new block of memory

" mallocandcallocarefoundinstdlib.h

[// allocate a 10-double array
double* arr = (double*) calloc (10, sizeof (double));
1f (arr == NULL) {

return errcode;

}

// do stuff with arr

W UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Fall 2022

free ()

& Usage;[free (pointer) ; }

+» Deallocates the memory pointed-to by the pointer

= Pointer must point to the first byte of heap-allocated memory (i.e.
something previously returned by malloc or calloc)

" Freed memory becomes eligible for future allocation

= The bits in the pointer are not changed by calling free

- Defensive programming: can set pointer to NULL after freeing it

N\

rfloat* arr = (float*) malloc(l0*sizeof (float)):;
1f (arr == NULL)

return errcode;
.. // do stuff with arr
free (arr) ;
arr = NULL; // OPTIONAL

\ J

13

W UNIVERSITY of WASHINGTON

Heap and Stack Example

arraycopy.c

}

q

/ginclude <stdlib.h> ﬁ\

int* copy(int af[], int size) {

int main(int argc, char** argv) {

int 1, *az2;

a2 = malloc(size*sizeof (int));
1f (a2 == NULL)
return NULL;

for (1 = 0; 1 < size; 1i++)
a2[i] = alil;

return az2;

int nums(4] = {1, 2, 3, 4};
int* ncopy = copy(nums, 4);
// .. do stuff with the array
free (ncopy) ;

return 0;

LO4: The Heap, Structs

CSE333, Fall 2022

Note: Arrow points
to next instruction.

Stack

nums

main

ncopy

1

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

14

W UNIVERSITY of WASHINGTON

Heap and Stack Example

arraycopy.c

}

q

.

/ginclude <stdlib.h> ﬁ\

int* copy(int af[], int size) {

int main(int argc, char** argv) {

int 1, *az2;

a2 = malloc(size*sizeof (int));
1f (a2 == NULL)
return NULL;

for (1 = 0; 1 < size; 1i++)
a2[i] = alil;

return az2;

int nums(4] = {1, 2, 3, 4};
int* ncopy = copy(nums, 4);
// .. do stuff with the array
free (ncopy) ;

return 0;

LO4: The Heap, Structs

CSE333, Fall 2022

Stack

nums| 1 |2 | 3

main

ncopy

1

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

15

W UNIVERSITY of WASHINGTON

Heap and Stack Example

arraycopy.c

ﬁ

}

/ginclude <stdlib.h> ﬁ\

int* copy(int af[], int size) {

int main(int argc, char** argv) {

int 1, *az2;

a2 = malloc(size*sizeof (int));
1f (a2 == NULL)
return NULL;

for (1 = 0; 1 < size; 1i++)
a2[i] = alil;

return az2;

int nums(4] = {1, 2, 3, 4};
int* ncopy = copy(nums, 4);
// .. do stuff with the array
free (ncopy) ;

return 0;

LO4: The Heap, Structs

CSE333, Fall 2022

Stack
numsi 11213
main - =
((ncopy
N
a ig size
copy ,
i az

1

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

16

W UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Fall 2022

Heap and Stack Example

arraycopy.c

/;include <stdlib.h> i\

int* copy(int afl[], int size) {
int 1, *az2;

— 52 = malloc(size*sizeof (int));
1f (a2 == NULL)
return NULL;

for (1 = 0; 1 < size; i++)
a2[i] = ali]l;

return az2;

}

int main(int argc, char** argv) {
int nums[4] = {1, 2, 3, 4};
int* ncopy = copy (nums, 4);
// .. do stuff with the array
free (ncopy) ;
return 0;

U / 17

W UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Fall 2022

Heap and Stack Example

arraycopy.c

/;include <stdlib.h> i\
int* copy(int afl[], int size) {

int 1, *az2;

a2 = malloc(size*sizeof (int));
) 1f (a2 == NULL)
return NULL;

for (1 = 0; 1 < size; i++)
a2[i] = ali]l;

return az2;

}

int main(int argc, char** argv) {
int nums[4] = {1, 2, 3, 4};
int* ncopy = copy (nums, 4);
// .. do stuff with the array
free (ncopy) ;
return 0;

\ J 18

W UNIVERSITY of WASHINGTON

Heap and Stack Example

arraycopy.c

}

/ginclude <stdlib.h> ﬁ\

int* copy(int af[], int size) {

int main(int argc, char** argv) {

int 1, *az2;

a2 = malloc(size*sizeof (int));
1f (a2 == NULL)
return NULL;

for (1 = 0; 1 < size; 1i++)
a2[i] = alil;

return az2;

int nums(4] = {1, 2, 3, 4};
int* ncopy = copy(nums, 4);
// .. do stuff with the array
free (ncopy) ;

return 0;

LO4: The Heap, Structs

CSE333, Fall 2022

Stack

numsi 1 (2] 3|4

main =
(rncopy

co
Py i10 a’ %J
/,

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

19

W UNIVERSITY of WASHINGTON

Heap and Stack Example

arraycopy.c

ﬁ
}

/ginclude <stdlib.h> ﬁ\

int* copy(int af[], int size) {

int main(int argc, char** argv) {

int 1, *az2;

a2 = malloc(size*sizeof (int));
1f (a2 == NULL)
return NULL;

for (1 = 0; 1 < size; 1i++)
a2[i] = alil;

return az2;

int nums(4] = {1, 2, 3, 4};
int* ncopy = copy(nums, 4);
// .. do stuff with the array
free (ncopy) ;

return 0;

LO4: The Heap, Structs

CSE333, Fall 2022

Stack

numsi 1 (2] 3|4

main =
(rncopy

Cco
BT g azg}J
/,

1 (2 (3|4

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

20

W UNIVERSITY of WASHINGTON

Heap and Stack Example

arraycopy.c

}

ﬁ

.

/ginclude <stdlib.h> ﬁ\

int* copy(int af[], int size) {

int main(int argc, char** argv) {

int 1, *az2;

a2 = malloc(size*sizeof (int));
1f (a2 == NULL)
return NULL;

for (1 = 0; 1 < size; 1i++)
a2[i] = alil;

return az2;

int nums(4] = {1, 2, 3, 4};
int* ncopy = copy(nums, 4);
// .. do stuff with the array
free (ncopy) ;

return 0;

LO4: The Heap, Structs

CSE333, Fall 2022

nums | 1 [2 | 3

main

ncopy

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

21

W UNIVERSITY of WASHINGTON

Heap and Stack Example

arraycopy.c

}

/ginclude <stdlib.h> ﬁ\

int* copy(int af[], int size) {

int main(int argc, char** argv) {

int 1, *az2;

a2 = malloc(size*sizeof (int));
1f (a2 == NULL)
return NULL;

for (1 = 0; 1 < size; 1i++)
a2[i] = alil;

return az2;

int nums(4] = {1, 2, 3, 4};
int* ncopy = copy(nums, 4);
// .. do stuff with the array
free (ncopy) ;

return 0;

LO4: The Heap, Structs

CSE333, Fall 2022

nums | 1 [2 | 3

main

ncopy

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

22

W UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Fall 2022

Heap and Stack Example

arraycopy.c

/;include <stdlib.h> i\

int* 1nt , 1nt]
in copyizg; all, int size) {

int 1,

ncopy] g
a2 = malloc(size*sizeof (int));
1f (a2 == NULL)

return NULL;

for (1 = 0; 1 < size; i++)
a2[i] = ali]l;

return az2;

}

int main(int argc, char** argv) {
int nums[4] = {1, 2, 3, 4};
int* ncopy = copy (nums, 4);
// .. do stuff with the array

= free (ncopy):;
return 0;

\ J 23

W UNIVERSITY of WASHINGTON

Heap and Stack Example

arraycopy.c

}

¢

/ginclude <stdlib.h>

int* copy(int af[], int size) {

int main(int argc, char** argv) {

int 1, *az2;

a2 = malloc(size*sizeof (int));
1f (a2 == NULL)
return NULL;

for (1 = 0; 1 < size; 1i++)
a2[i] = alil;

return az2;

int nums(4] = {1, 2, 3, 4};
int* ncopy = copy(nums, 4);
// .. do stuff with the array
free (ncopy) ;

return 0;

LO4: The Heap, Structs

~

CSE333, Fall 2022

Stack

nums | 1 [2 | 3

main

ncopy

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

24

W UNIVERSITY of WASHINGTON

Memory Corruption

+» There are all sorts of ways to corrupt memory in C
= What can go wrong here? What is guaranteed to cause an error?

memcorrupt.c

LO4: The Heap, Structs

(#include <stdio.h>
#include <stdlib.h>

int main(int argc,

int al[2];

char** argv)

{

int* b = malloc(2*sizeof (int));

int* c;

al2] = b5
b[0] +=
c = b+3;
free (& (a
free (b) ;
free (b) ;
b[0] = 5;

// any many more!

return 0O;

2;

[01)) 7

//
//
//
//
//
//
//

N Oy O oA W N =

~

CSE333, Fall 2022

27

W UNIVERSITY of WASHINGTON LO4: The Heap, Structs

CSE333, Fall 2022

Memory Corruption

+» There are all sorts of ways to corrupt memory in C

memcorrupt.c

(#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {
int al[2];
int* b = malloc(2*sizeof (int));

int* c;

af[2] = 5; // assign past the end of an array
b[(0] += 2; // assume malloc zeros out memory

c = b+3; // mess up your polinter arithmetic
free (& (al0]1)); // free something not malloc'ed
free (b) ;

free (b) ; // double-free the same block

b[0] = 5; // use a freed (dangling) pointer

// any many more!
return O;

28

W UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Fall 2022

Memory Corruption - What Happens?

(ginclude <stdio.h>)
#include <stdlib.h>

stack: main

int main(int argc, char** argv) {
a 5 int al[2];
: int* b = malloc (2*sizeof (int)) ;
5 1ac™ @g
al[2] = 5; // assign past the end of an array
b[0] += 2; // assume malloc zeros out memory
b c = b+3; // mess up your polinter arithmetic
free(&(al[0])); // free something not malloc'ed
free (b) ;
C free (b) ; // double-free the same block
b[0] = 5; // use a freed (dangling) pointer

// any many more!

heap: return 0;

— 77

memcorrupt.c -

W UNIVERSITY of WASHINGTON

LO4: The Heap, Structs

CSE333, Fall 2022

Memory Leak

+ A memory leak occurs when code fails to deallocate
dynamically-allocated memory that is no longer used
= e.g. forget to £ree malloc-ed block, lose/change pointer to the block

" Takes real work to prevent — as pointers are passed around, what part of
the program is responsible for freeing the malloc-ed block?

+» What happens: program’s VM footprint will keep growing

" This might be OK for short-lived program, since all memory is

deallocated when program ends

Usually has bad repercussions for long-lived programs
« Might slow down over time (e.g. lead to VM thrashing)
- Might exhaust all available memory and crash

« Other programs might get starved of memory

30

W UNIVERSITY of WASHINGTON

LO4: The Heap, Structs

Lecture Outline

+» Heap-allocated Memory
" malloc () and free ()

"= Memory leaks

+ structsand typedef

CSE333, Fall 2022

31

W UNIVERSITY of WASHINGTON

Structured Data

LO4: The Heap, Structs

+» A struct isa Cdatatype that contains a set of fields

= Similar to a Java class, but with no methods or constructors

= Useful for defining new structured types of data

= Act similarly to primitive variables (can assign, pass by value, ...)

= A struct tagname is a tag; not a full first-class type name

« @Generic declaration:

~ ™

struct tagname {
typel namel;
typeN nameN;

\}; J

(// the following defines a new

// structured datatype called
// a "struct Point"

struct Point {
float x, vy;

¥

// declare and initialize a
// struct Point variable

struct Point origin = {O.O,O.O};J

CSE333, Fall 2022

32

W UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Fall 2022

Using structs

« Use “.” to refer to a field in a struct

+» Use “—>" to refer to a field from a struct pointer

= Shorthand for: dereference pointer first, then accesses field

- Using p->x instead of (*p).x is standard practice — do it that way

rstruct Point { R
float x, vy;

¥

int main(int argc, char** argv) {

struct Point pl = {0.0, 0.0}; // pl is stack allocated
struct Point* pl ptr = &pl;

pl.x = 1.0;
pl ptr->y =
return O;

\} J

simplestruct.c

2.0; // equivalent to (*pl ptr).y = 2.0;

33

W UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Fall 2022

Copy by Assignment

% You can assign the value of a struct from a struct of the
same type — this copies the entire contents!

(#include <stdio.h>

struct Point {
float x, vy;

b

int main(int argc, char** argv) {
struct Point pl = {0.0, 2.0};
struct Point p2 = {4.0, 6.0};

printf ("pl: {%f,%f} p2: {%f,%f}\n", pl.x, pl.y, P2.X, P2.VY);
pz2 = pl;
printf ("pl: {%f,%f} p2: {%f,%f}\n", pl.x, pl.y, P2.X, P2.VY);
return 0O;

. V),

structassign.c

34

W UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Fall 2022

typedef

+ @Generic format:[typedef type name;]

+» Allows you to define new data type names/synonyms
= Both type and name are usable and refer to the same type

= Be careful with pointers — * before name is part of t ype!

f// make "superlong" a synonym for "unsigned long long" R
typedef unsigned long long superlong;
// make "str" a synonym for '"char*"
typedef char *str;
// make "Point" a synonym for "struct point st { ... }"
// make "PointPtr" a synonym for "struct point st*"
typedef struct point st {
superlong x;
superlong y;
} Point, *PointPtr; // similar syntax to "int n, *p;"
Point origin = {0, O0};)

35

CSE333, Fall 2022

W UNIVERSITY of WASHINGTON LO4: The Heap, Structs

Dynamically-allocated Structs

%+ You canmalloc and £ree structs, just like other data

type

" sizeof is particularly helpful here

(// a complex number is a + bi
typedef struct complex st {
double real; // real component
double imag; // imaginary component
} Complex, *ComplexPtr;

// note that ComplexPtr 1is equivalent to Complex*
ComplexPtr AllocComplex (double real, double imag)

}

return retval;

\J

{

Complex* retval = (Complex*) malloc(sizeof (Complex))
1f (retval != NULL) {

retval->real = real;

retval->imag = 1imag;

complexstruct.c

36

CSE333, Fall 2022

W UNIVERSITY of WASHINGTON LO4: The Heap, Structs

Structs as Arguments

% Structs are passed by value, like everything else in C

" Entire struct is copied — where?
®" To manipulate a struct argument, pass a pointer instead

(typedef struct point st { A
int x, y;
} Point, *PointPtr;

volid DoubleXBroken (Point p) { p.x *= 2; 1}
vold DoubleXWorks (PointPtr p) { p—->x *= 2; }

int main(int argc, char** argv) {
Point a = {1,1};
DoubleXBroken (a) ;
printf (" (%d, $d) \n", a.x, a.y): // prints: (,)
DoubleXWorks (&a) ;
printf (" (%d, $d) \n", a.x, a.y): // prints: (,)
return 0;

W UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Fall 2022

Returning Structs

+» Exact method of return depends on calling conventions
= Oftenin Yrax and $rdx for small structs

= Often returned in memory for larger structs

(// a complex number 1s a + bi R
typedef struct complex st {
double real; // real component
double imag; // Iimaginary component
} Complex, *ComplexPtr;
Complex MultiplyComplex (Complex x, Complex y) {
Complex retval;
retval.real = (x.real * y.real) - (x.imag * y.imag);
retval.imag = (x.imag * y.real) - (x.real * y.imag);
return retval; // returns a copy of retval
k} W,

complexstruct.c

38

W UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Fall 2022

Pass Copy of Struct or Pointer?

+ Value passed: passing a pointer is cheaper and takes less
space unless struct is small

» Field access: indirect accesses through pointers are a bit
more expensive and can be harder for compiler to
optimize

- For small stucts (like struct complex st), passing a
copy of the struct can be faster and often preferred if
function only reads data; for large structs or if the
function should change caller’s data, use pointers

39

W UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Fall 2022

Extra Exercise #1

+~ Worite a program that defines:
= A new structured type Point
- Represent it with £1oats for the x and y coordinates

= A new structured type Rectangle
- Assume its sides are parallel to the x-axis and y-axis

- Represent it with the bottom-left and top-right Points
= A function that computes and returns the area of a Rectangle

= A function that tests whether a Point is inside of a Rectangle

40

W UNIVERSITY of WASHINGTON LO4: The Heap, Structs

Extra Exercise #2

% Implement AllocSet () and FreeSet ()

= AllocSet() needs to use malloc twice: once to allocate a new
ComplexSet and once to allocate the “points” field inside it

" FreeSet() needs to use free twice

(typedef struct complex st {

double real; // real component
double imag; // imaginary component
} Complex;

typedef struct complex set st {
double num points in set;

Complex* points; // an array of Complex
} ComplexSet;

ComplexSet* AllocSet (Complex ¢ arr[], int size);
vold FreeSet (ComplexSet* set);

\.

CSE333, Fall 2022

41

