
CSE 333
Section 9
Boost & Hypertext Transfer Protocol

1

Logistics
Friday, Mar 12:

HW4 @ 12pm

2

BOOOOOOOOST

3

BOOST (HW4)
Boost is a free C++ library that provides support for various tasks
in C++
● Note: Boost does NOT follow the Google style guide!!!

Boost adds many string algorithms that you may have seen in
Java
● Include with #include

<boost/algorithm/string.hpp>

We are showcasing a few we think could be useful for HW4, but
more can be found here:
● https://www.boost.org/doc/libs/1_60_0/doc/html/string_al

go.html
4

https://www.boost.org/doc/libs/1_60_0/doc/html/string_algo.html
https://www.boost.org/doc/libs/1_60_0/doc/html/string_algo.html

Helpful BOOST Functions
void boost::trim(string& input);
● Removes all leading and trailing whitespace from the string
● input is an input and output parameter (non-const reference)

string s(" HI ");
boost::algorithm::trim(s);
// results in s == "HI"

5

More Helpful BOOST Functions
void boost::replace_all(string& input, const string& search, const
string& format);
● Replaces all instances of search inside input with format
● replace_all() guarantees that‘format’ will be in the final result if-and-only-if‘search’

existed.replace_all() makes a singlepass over input

string s("queue?");
boost::algorithm::replace_all(s, "que", "q");
// results in s == "que?"

6

More Helpful BOOST Functions
void boost::split(vector<string>& output,

 const string& input,
 boost::PredicateT match_on,
 boost::token_compress_mode_type compress);

● Split the string by the characters in match_on

boost::PredicateT boost::is_any_of(const string& tokens);
● Returns predicate that matches on any of the characters in tokens

7

split Example
vector<string> tokens;
string s("I-am--split");

boost::split(tokens, s, boost::is_any_of("-"),boost::token_compress_on);
// results in tokens == ["I", "am", "split"]

boost::split(tokens, s, boost::is_any_of("-"),boost::token_compress_off);
// results in tokens == ["I", "am", "", “split"]

8

Exercise 1
Write a function that takes in a string that contains words separated by whitespace and returns a vector that contains all of
the words in that string, in the same order as they show up, but with no duplicates. Ignore all leading and trailing
whitespace in the input string.

Example:
RemoveDuplicates(" Hi I'm sorry jon sorry hi hihi hi hi ") should return the vector ["Hi", "I'm",
"sorry", "jon", "hi", "hihi"]

vector<string> RemoveDuplicates(const string& input);

9

Exercise 1 Solution
vector<string> RemoveDuplicates(const string& input){

string copy(input);
boost::algorithm::trim(copy);
std::vector<string> components;
boost::split(components, copy, boost::is_any_of(" \t\n"), boost::token_compress_on);
std::vector<string> result;
for (uint i = 0; i < components.size(); ++i) {

bool unique = true;
for (uint j = 0; j < i && unique; ++j) {

unique &= !(components[i] == components[j]);
}
if (unique) {

result.push_back(components[i]);
}

}
return result

}

10

Hypertext
Transfer Protocol

11

HTTP Basics

● A client establishes one or more TCP connections to a server
○ The client sends a request for a web object over a connection and the server

replies with the object’s contents

● We have to figure out how to let the client and server communicate
their intentions to each other clearly
○ We have to define a protocol

“I’d like index.html”

“Found it, here it is: (index.html)”

12

Protocols
● A protocol is a set of rules governing the format and

exchange of messages in a computing system
○ What messages can a client exchange with a server?

■ What is the syntax of a message?

■ What do the messages mean?

■ What are legal replies to a message?

○ What sequence of messages are legal?
■ How are errors conveyed?

● A protocol is (roughly) the network equivalent of an API
13

HTTP
● Hypertext Transfer Protocol

○ A request / response protocol
■ A client (web browser) sends a request to a web server

■ The server processes the request and sends a response

○ Typically, a request asks a server to retrieve a resource
■ A resource is an object or document, named by a Uniform Resource Identifier (URI)

○ A response indicates whether or not the server succeeded
■ If so, it provides the content of the requested response

○ Wikipedia:
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

14

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods

HTTP Requests
● General form:

○ [METHOD] [request-uri] HTTP/[version]\r\n
[headerfield1]: [fieldvalue1]\r\n
[headerfield2]: [fieldvalue2]\r\n
[...]
[headerfieldN]: [fieldvalueN]\r\n
\r\n
[request body, if any]

● Demo: use nc to see a real request

15

HTTP Methods
● There are three commonly-used HTTP methods:

○ GET: “please send me the named resource”

○ POST: “I’d like to submit data to you” (e.g. file upload)

○ HEAD: “Send me the headers for the named resource”
■ Doesn’t send resource; often to check if cached copy is still valid

● Other methods exist, but are much less common:
○ PUT, DELETE, TRACE, OPTIONS, CONNECT, PATCH, ...

■ For instance: TRACE – “show any proxies or caches in between me and the server”

16

HTTP Uniform Resource Identifier (URI)
● Absolute URI

○ Composition: scheme:[//authority]path[?query]
○ Mainly used for communicating via proxy

● Most common form of Request-URI
○ Composition: path[?query]
○ Host is specified through headers
○ Query is optional
○ Path can be empty (just /)

● Example Request-URI:
○ /static/test_tree/books/artofwar.txt?terms=hello

17

HTTP Versions
● All current browsers and servers “speak” HTTP/1.1

○ Version 1.1 of the HTTP protocol
■ https://www.w3.org/Protocols/rfc2616/rfc2616.html

○ Standardized in 1997 and meant to fix shortcomings of HTTP/1.0
■ Better performance, richer caching features, better support for multihomed servers, and much more

● HTTP/2 standardized recently (published in 2015)
○ Allows for higher performance but doesn’t change the basic web

request/response model

○ Will coexist with HTTP/1.1 for a long time

18

https://www.w3.org/Protocols/rfc2616/rfc2616.html

Client Headers
● The client can provide zero or more request “headers”

○ These provide information to the server or modify how the server should
process the request

● You’ll encounter many in practice
○ Host: the DNS name of the server

○ User-Agent: an identifying string naming the browser

○ Accept: the content types the client prefers or can accept

○ Cookie: an HTTP cookie previously set by the server

○ https://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html

19

https://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html

A Real Request

GET / HTTP/1.1
● HTTP method
● URI
● Version

20

GET / HTTP/1.1
Host: attu.cs.washington.edu:3333
Connection: keep-alive
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/66.0.3359.181 Safari/537.36
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,
image/apng,*/*;q=0.8
DNT: 1
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9
Cookie: SESS0c8e598bbe17200b27e1d0a18f9a42bb=5c18d7ed6d369d56b69a1c0aa441d7 8f;
SESSd47cbe79be51e625cab059451de75072=d137dbe7bbe1e90149797dcd89c639b1;
...

HTTP Responses
● General form:

○ HTTP/[version] [status code] [reason]\r\n
[headerfield1]: [fieldvalue1]\r\n
[headerfield2]: [fieldvalue2]\r\n
[...]
[headerfieldN]: [fieldvalueN]\r\n
\r\n
[response body, if any]

● Demo: use telnet to see a real response

○ telnet www.google.com 80

○ telnet attu4.cs.washington.edu 5555 (if running hw4 server)

■ ./solution_binaries/http333d 5555 ../projdocs unit_test_indices/*

○ GET / HTTP/1.1

■ hit double enter, ctrl +] -> quit

■ more requests next page
21

Writing an HTTP Request
● Example HTTP Request layout can be found in HttpRequest.h
● Example file request:

○GET /static/test_tree/books/artofwar.txt HTTP/1.1
● Example query request:

○GET /query?terms=books+of+war HTTP/1.1
● To send a request, hit [Enter] twice
● Compare the output of solution_binaries/http3d to ./http3d

22

Status Codes and Reason
● Code: numeric outcome of the request – easy for computers to

interpret
○ A 3-digit integer with the 1st digit indicating a response category

■ 1xx: Informational message

■ 2xx: Success

■ 3xx: Redirect to a different URL

■ 4xx: Error in the client’s request

■ 5xx: Error experienced by the server

● Reason: human-readable explanation
○ e.g. “OK” or “Moved Temporarily”

23

Common Statuses
● HTTP/1.1 200 OK

○ The request succeeded and the requested object is sent

● HTTP/1.1 404 Not Found

○ The requested object was not found

● HTTP/1.1 301 Moved Permanently

○ The object exists, but its name has changed
■ The new URL is given as the “Location:” header value

● HTTP/1.1 500 Server Error

○ The server had some kind of unexpected error

24

Server Headers
● The server can provide zero or more response “headers”

○ These provide information to the client or modify how the client should process the
response

● You’ll encounter many in practice
○ Server: a string identifying the server software

○ Content-Type: the type of the requested object

○ Content-Length: size of requested object

○ Last-Modified: a date indicating the last time the request object was modified

○ https://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html

25

https://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html

A Real Response

26

HTTP/1.1 200 OK
Date: Mon, 21 May 2018 07:58:46 GMT
Server: Apache/2.2.32 (Unix) mod_ssl/2.2.32 OpenSSL/1.0.1e-fips
mod_pubcookie/3.3.4a mod_uwa/3.2.1 Phusion_Passenger/3.0.11
Last-Modified: Mon, 21 May 2018 07:58:05 GMT
ETag: "2299e1ef-52-56cb2a9615625"
Accept-Ranges: bytes
Content-Length: 82
Vary: Accept-Encoding,User-Agent
Connection: close
Content-Type: text/html
Set-Cookie:
bbbbbbbbbbbbbbb=DBMLFDMJCGAOILMBPIIAAIFLGBAKOJNNMCJIKKBKCDMDEJHMPONHCILPIBLADEAKCI
ABMEEPAOPMMKAOLHOKJMIGMIDKIHNCANAPHMFMBLBABPFENPDANJAPIBOIOOOD; HttpOnly

<html><body>
Awesome!!
</body></html>

hw4 Demo
● ./solution_binaries/http333d 5555 ../projdocs

unit_test_indices/*
● http://attu4.cs.washington.edu:5555/
● Inspect element/page source
● Alternative to telnet
● Compare your server to the

solution!

27

http://attu4.cs.washington.edu:5555/

Exercise 4
Write a function called ExtractRequestLine that takes in a well-formatted HTTP request as a string and returns
a map with the keys as method, uri, version and the values from the corresponding request. For example,

Example Input:

Map Returned:

28

"GET /index.html HTTP/1.1\r\nHost: www.mywebsite.com\r\nConnection:
keep-alive\r\nUpgrade-Insecure-Requests: 1\r\n\r\n"

{
 "method" : "GET"
 "uri" : "/index.html"
 "version" : "HTTP/1.1"
}

Exercise 4 Solution
map<string,string> ExtractRequestLine(const string& request) {

 vector<string> lines;

 boost::split(lines, request, boost::is_any_of("\r\n"), boost::token_compress_on);

 vector<string> components;
 string firstLine = lines[0];
 boost::split(components, firstLine, boost::is_any_of(" "), boost::token_compress_on);

 map<string, string> res;
 res["method"] = components[0];
 res["uri"] = components[1];
 res["version"] = components[2];
 return res;

}

29

Good luck!!! :-)

30

Cool HTTP/1.1 Features
● “Chunked Transfer-Encoding”

○ A server might not know how big a response object is
■ e.g. dynamically-generated content in response to a query or other user input

○ How do you send Content-Length?
■ Could wait until you’ve finished generating the response, but that’s not great in terms of latency –

we want to start sending the response right away

○ Chunked message body: response is a series of chunks

31

Cool HTTP/1.1 Features
● Persistent connections

○ Establishing a TCP connection is costly
■ Multiple network round trips to set up the TCP connection

■ TCP has a feature called “slow start”; slowly grows the rate at which a TCP connection transmits to
avoid overwhelming networks

○ A web page consists of multiple objects and a client probably
visits several pages on the same server
■ Bad idea: separate TCP connection for each object

■ Better idea: single TCP connection, multiple requests

32

20 years later…
● World has changed since HTTP/1.1 was adopted

○ Web pages were a few hundred KB with a few dozen objects on
each page, now several MB each with hundreds of objects (JS,
graphics, …) & multiple domains per page

○ Much larger ecosystem of devices (phones especially)

○ Many hacks used to make HTTP/1.1 performance tolerable
■ Multiple TCP sockets from browser to server

■ Caching tricks; JS/CSS ordering and loading tricks; cookie hacks

■ Compression/image optimizations; splitting/sharding requests

■ etc., etc. …

33

HTTP/2
● Based on Google SPDY; standardized in 2015

○ Binary protocol - easier parsing by machines (harder for humans); sizes in
headers, not discovered as requests are processed; …
■ But same core request/response model (GET, POST, OK, …)

○ Multiple data steams multiplexed on single TCP connections
○ Header compression, server push, object priorities, more…

● All existing implementations incorporate TLS encryption (https)
● Supported by all major browsers and servers since ~2015
● Widely used now by all major web sites

○ Coexists with HTTP/1.1
○ HTTP/2 used automatically when browser and server both support it

34

Peer Instruction Question
● Are the following statements True or False?

Q1 Q2
A. False False
B. False True
C. True False
D. True True
E. We’re lost…

35

Q1: A protocol only defines the
“vocabulary” that clients and
servers can communicate with.
Q2: Clients and servers use the
same header fields.

Peer Instruction Question
● Which HTTP status code family do you think the following

Reasons belong to?

Q1 Q2
A. 4xx2xx
B. 4xx3xx
C. 5xx2xx
D. 5xx3xx
E. We’re lost…

36

Q1: Gateway Time-out

Q2: No Content

