CSE 333

Section 8
Client-Side Networking

YW UNIVERSITY of WASHINGTON |

Logistics

Friday, Feb 26 (tomorrow):
HW3 @ 12pm

Computer Networks: layers of abstraction

e How to connect computers by having hosts/processes communicates?

e Ahigh-level requirement with lots of specifics involved
How to physically send data (in bits/bytes)?

structure and semantics of data

identification of hosts

etc.

e Application programmers don’t want to deal with all these.

e The common way to build system is through layers of abstractions
o Each layerimplements a part of the problem and provides an interface for the higher layers
o Decomposes the problem and brings modularity (e.g. many types of services at same layer
depending on requirement.)

(@)
(@)
(@)
(@)

(adapted from https://book.systemsapproach.org/foundation/architecture.html)

https://book.systemsapproach.org/foundation/architecture.html

Computer Networks: layers of abstraction

e In networking context, abstract objects making up the layers are called protocols

e A protocol specifies
o aservice interface to high-level protocol/object (i.e. set of operations they can use)
o apeerinterface for syntax and semantics of messages between peers of the same protocol

e What would be a good set of layers offering useful service while being efficient?

Host 1 Host 2
Application programs
Request/reply Message stream High-level High-level
channel channel object object
. Service Service
Host-to-host connectivity interface M e
Hardware Protocol Protocol
Peer-to-peer
interface

(adapted from https://book.systemsapproach.org/foundation/architecture.html)

https://book.systemsapproach.org/foundation/architecture.html

Computer Networks: architectures

7-Layer OSI Model

Internet Architecture
(a.k.a. TCP/IP Architecture)

transport transport

network network network
data link data link data link

physical physical physical

Application
TCP | UDP

IP

Subnetwork
TNETT [[NET [e [NET

e Weintroduce the 7-Layer OSlI architecture, skipping presentation and session layers.
e Modern Internet is based on the Internet Architecture, but layers map well to the OSI model.

(adapted from https://book.systemsapproach.org/foundation/architecture.html)

https://book.systemsapproach.org/foundation/architecture.html

Computer Networks: A 7-ish Layer Cake

application

presentation

session
transport
network
data link

physical

network
data link

physical

application
gpresentation
session
transport
network
data link

physical

Computer Networks: A 7-ish Layer Cake

e Transmitsignal through

physical medium 8161
e Bits from high/low voltage,
frequency, etc.

bit encoding at signal level physical physical physical

P

Computer Networks: A 7-ish Layer Cake

P Sp eCiﬁ es Communi Cati on Wlth 00:1d:4f:47:0d:48 4c:44:1e:8f:12:0e 7a:37:8e:fc:1a:ea de:ad:be:ef:ca:fe 01:23:32:10:ab:ba
other nodes on a link
e “Packetized” stream of bits into
frames
[|
LAN ethernet
destination | source
ethernet frame o drass S data
implemented by network adaptors and ainat hnatas ethemnet payload

device drivers

multiple computers on a local network | S5aE =112 data link data link

bit encoding at signal level physical physical physical

Computer Networks: A 7-ish Layer Cake

e Interconnect different network types m®@ @ m m mestination

e Routers implements up to this layer —— T

e |P packets within payload of data -
Fal? source Bl-----
link’s packet (frame) -

router
IP header IP payload
| ot
ethernet header ethernet payload
routing of packets across networks network network network
multiple computers on a local network data link data link data link

bit encoding at signal level physical physical physical

Computer Networks: A 7-ish Layer Cake

e Runsonly onend hosts
e Provides process-to-process
abstraction

e Again, packets nested inside payload UDP
of IP packets

sending data end-to-end transport
routing of packets across networks network
multiple computers on a local network data link

bit encoding at signal level physical

TCP

process-to-process
abstraction!

transport

network network

data link data link

physical physical

Computer Networks: A 7-ish Layer Cake

format/meaning of high-level messages

sending data end-to-end
routing of packets across networks
multiple computers on a local network

bit encoding at signal level

HTTP

application
presentation
session
transport
network
data link

physical

DNS

network
data link

physical

NETFLIX

application

gpresentation

session

transport
network
data link

physical

Packet encapsulation

HTTP HTTP payload
header (e.g. chunk of HTML page)
TCP
basdar TCP payload
IP header IP payload
destination source d
address address ata

ethernet header

ethernet payload

12

Data flow

Transmit application
Data presentation
session
transport
network

data link

physical

network
data link

physical

application

gpresentation

session
transport
network
data link

physical

Receive
Data

13

Exercise 1

Exercise 1

format/meaning of messages

sending data end-to-end
routing of packets across networks
multiple computers on a local network

bit encoding at signal level

application

presentation

session
transport
network
data link

physical

network
data link

physical

. application
gpresentation
session
transport
network
data link

physical

Exercise 1

Vote in Zoom!

@ = application layer €© =transport layer

Ves no

<

go slowe

_ = network layer ® - link layer

go faster

e DNS: Translating between IP addresses and host names. (Application Layer)

® IP: Routing packets across the Internet. (Network Layer)

e TCP: Reliable, stream-based networking on top of IP. (Transport Layer)

e UDP:

Unreliable, packet-based networking on top of IP. (Transport Layer)

e HTTP: Sending websites and data over the Internet. (Application Layer)

16

TCP versus UDP

Transmission Control Protocol(TCP) User Datagram Protocol(UDP)
- Connection oriented Service - Connectionless service
- Reliable and Ordered - Unreliable packet delivery
- Flow control - Faster

- No feedback

17

Sockets

- Just a file descriptor for network communication
- processes communicate with the outside through 1/0 operations
- sockets APl enables access to the TCP/UDP transport protocol
- transport protocol provides abstraction of processes over network
- Types of Sockets
- Stream sockets (TCP)
- Datagram sockets (UDP)
- Each socket is associated with a port number and an IP address
- Both port and address are stored in network byte order (big endian)

gtrict Bofkaddr Sk

family| port addr zZero
0 2 4 8 16
etruel seakaddr inG:
. addr
famport| flow scope

0 2 4 8 24 28

18

File Descriptor Table

128.95.4.33

Web Server

Internet

index.html
pic.png
Pefia

\ 4

client

client

OS’s File Descriptor Table for the Process

Desl::irli(:) tor Type Connection
0 pipe stdin (console)
1 pipe stdout (console)
2 pipe stderr (console)
3 TCP local: 128.95.4.33:80
socket | remote: 44.1.19.32:7113
file index.html
8 file pic.png
9 TCP local: 128.95.4.33:80
socket | remote: 102.12.3.4:5544

19

Sockets/Address

struct sockaddr

(pointer to this struct is used as parameter type in system calls)

fam

2222

struct sockaddr in (IPv4)

fam | port addr zero
16
struct sockaddr in6é (IPvo6)
fam | port flow addr scope

struct sockaddr_ storage

28

fam

Big enough to hold eitHdr

Byte Ordering and Endianness

- Network Byte Order (Big Endian)

- The most significant byte is stored in the highest address
- Host byte order

- Might be big or little endian, depending on the hardware
- To convert between orderings, we can use

uintl6 t htons (uintl6 t hostlong);
uintl6 t ntohs (uintl6 t hostlong);

uint32 t htonl (uilnt32 t hostlong);
uint32 t ntohl (uint32 t hostlong);

21

Exercise 2

client-side example

struct addrinfox '

int (sa_family) =

int (sockfd)

@

@

specify lookup hints

Figure out what IP address and port to talk

to. (getaddrinfo())
|

v

extract fields from result
(IPv4 vs IPv6)

Create a socket. (socket())

®

Connect to the server. (connect())

®

Transfer data through the socket. (read ()
and write()) (i.e. /O with the peer
process to implement your application!)

|

Close the socket when done. (close())

Dotted boxes should
be filled in with the
data type.

i struct addrinfox

struct
~ sockaddr_storagex |

specify lookup hints

<::> (hostname, servname, : > 1

int getaddrinfo(const char *hostname,
- const char *service,
1' getaddrlnfo() const struct addrinfo *hints,
struct addrinfo **res);

- Performs a DNS Lookup for a hostname

specify lookup hints

......................

int getaddrinfo(const char *hostname,

1. getaddrinfo() const char *service,

const struct addrinfo *hints,
struct addrinfo **res);

- Performs a DNS Lookup for a hostname
- Use “hints” to specify constraints (struct addrinfo *)

- Getbackalinked listof struct addrinfo results

specify lookup hints

A ——

e i e i e e e e i

26

Network Addresses

e ForlIPv4, an IP address is a 4-byte tuple
o e.g.,128.95.4.1 (80:5f:04:01 in hex)

e ForlIPv6, an IP address is a 16-byte tuple

o e.g., 2d01:0db8:f188:0000:0000:0000:0000:1f33
o 2d01:0db8:f188::1f33 in shorthand

27

DNS - Domain Name System/Service

A hierarchical distributed naming system any resource connected to the Internet or
a private network.

Resolves queries for names into IP addresses.

The sockets API lets you convert between the two.
o Aside: getnameinfo() is the inverse of getaddrinfo()

Is on the application layer on the Internet protocol suite.

POSIX form of resolving DNS names is getaddrinfo()

o dig+trace attu.cs.washington.edu shown later

28

1. getaddrinfo() - Interpreting Results

struct addrinfo {

int ai_flags; // additional flags

int ai family; // AF INET, AF INET6, AF UNSPEC

int ai socktype; // SOCK STREAM, SOCK DGRAM, O

int ai protocol; // IPPROTO TCP, IPPROTO UDP, O
size t ai addrlen; // length of socket addr in bytes
struct sockaddr* ai addr; // pointer to socket addr
char* ai canonname; // canonical name

struct addrinfo* ai next; // can form a linked list

al addr pointstoastruct sockaddr describingthe socket address

29

1.

getaddrinfo() - Interpreting Results

With a struct sockaddr*:

The field sa family describesifitisIPv4 or IPv6
Castto struct sockaddr in* (vé4)or struct sockaddr in6* (vo6)
to access/modify specific fields

Storeresultsina struct sockaddr storage tohave aspace bigenough for

either I o

{ i struct addrinfox |

extract fields from result
(IPv4 vs IPv6)

\ 1 30

<::> (, type, protocol)

extract fields from result
(IPv4 vs IPv6)

\ 31

2. socket()

int socket (int domain, // AF INET, AF INETG6
int type, // SOCK STREAM (TCP)

int protocol); // 0

- Creates a “raw” socket, ready to be bound

- Returns file descriptor (sockfd) on success, -1 on failure

e

—————

extract fields from result
(IPv4 vs IPv6)

32

extract fields from result
(IPv4 vs IPv6)

g s e iy s e e i et g

\ J M e ceocccceciosncicaocaosd
(::) (, type, protocol)

| -
<::> (; , addrlen)

33

int connect (int sockfd, // from 2
const struct sockaddr *serv addr, // from 1

3' conneCt() socklen t addrlen) ; // size of serv addr

- Connects an available socket to a specified address

- Returns 0 on success, -1 on failure

extract fields from result
(IPv4 vs IPv6)

A ——

\/
1 (::) connect(sockfd, serv_addr, addrlen)
34

int connect (int sockfd, // from 2
const struct sockaddr *serv addr, // from 1

3- ConneCt() socklen t addrlen) ; // size of serv addr

- Connects an available socket to a specified address

- Returns 0 on success, -1 on failure

extract fields from result
(IPv4 vs IPv6)

| . [struct i

:mfgfmﬁfiji?T}1X1_f — | i sockaddr_storagex |
<::> socket(domain, type, protocol)

i int (sockfd) ? ____________________

_________________________ <------- Cast sockaddr storage* tosockaddr*!

\/
1 (::) connect(sockfd, serv_addr, addrlen)
35

4. read/write and 5. close

- Thanks to the file descriptor abstraction, use as normal!

- readfromand write to a buffer, the OS will take care of
sending/receiving data across the network

- Make sure to close the fd afterward

 /
read(sockfd, buf, count)

O,

write(sockfd, buf, count)

\/
<::> close(sockfd)

36

