
CSE 333
Section 8
Client-Side Networking

1

Logistics
Friday, Feb 26 (tomorrow):

HW3 @ 12pm

2

Computer Networks: layers of abstraction
● How to connect computers by having hosts/processes communicates?
● A high-level requirement with lots of specifics involved

○ How to physically send data (in bits/bytes)?
○ structure and semantics of data
○ identification of hosts
○ etc.

● Application programmers don’t want to deal with all these.
● The common way to build system is through layers of abstractions

○ Each layer implements a part of the problem and provides an interface for the higher layers
○ Decomposes the problem and brings modularity (e.g. many types of services at same layer

depending on requirement.)

3(adapted from https://book.systemsapproach.org/foundation/architecture.html)

https://book.systemsapproach.org/foundation/architecture.html

Computer Networks: layers of abstraction
● In networking context, abstract objects making up the layers are called protocols
● A protocol specifies

○ a service interface to high-level protocol/object (i.e. set of operations they can use)
○ a peer interface for syntax and semantics of messages between peers of the same protocol

● What would be a good set of layers offering useful service while being efficient?

4(adapted from https://book.systemsapproach.org/foundation/architecture.html)

https://book.systemsapproach.org/foundation/architecture.html

Computer Networks: architectures

5

7-Layer OSI Model Internet Architecture
(a.k.a. TCP/IP Architecture)

● We introduce the 7-Layer OSI architecture, skipping presentation and session layers.
● Modern Internet is based on the Internet Architecture, but layers map well to the OSI model.

(adapted from https://book.systemsapproach.org/foundation/architecture.html)

https://book.systemsapproach.org/foundation/architecture.html

Computer Networks: A 7-ish Layer Cake

6

Computer Networks: A 7-ish Layer Cake

7

format/meaning of messages

sending data end-to-end

routing of packets across networks

multiple computers on a local network

bit encoding at signal level

● Transmit signal through
physical medium

● Bits from high/low voltage,
frequency, etc.

format/meaning of messages

sending data end-to-end

routing of packets across networks

multiple computers on a local network

bit encoding at signal level

implemented by network adaptors and
device drivers

Computer Networks: A 7-ish Layer Cake

LAN

8

● Specifies communication with
other nodes on a link

● “Packetized” stream of bits into
frames

ethernet frame

Computer Networks: A 7-ish Layer Cake

format/meaning of messages

sending data end-to-end

routing of packets across networks

multiple computers on a local network

bit encoding at signal level

9

● Interconnect different network types
● Routers implements up to this layer
● IP packets within payload of data

link’s packet (frame)

Computer Networks: A 7-ish Layer Cake

format/meaning of messages

sending data end-to-end

routing of packets across networks

multiple computers on a local network

bit encoding at signal level

UDP TCP
process-to-process
abstraction!

10

● Runs only on end hosts
● Provides process-to-process

abstraction
● Again, packets nested inside payload

of IP packets

Computer Networks: A 7-ish Layer Cake

format/meaning of high-level messages

sending data end-to-end

routing of packets across networks

multiple computers on a local network

bit encoding at signal level

DNSHTTP

11

Packet encapsulation

12

Data flow

Transmit
Data

Receive
Data

13

Exercise 1

14

Exercise 1

format/meaning of messages

sending data end-to-end

routing of packets across networks

multiple computers on a local network

bit encoding at signal level

15

Exercise 1

● DNS:

● IP:

● TCP:

● UDP:

● HTTP:

Translating between IP addresses and host names. (Application Layer)

Routing packets across the Internet. (Network Layer)

Reliable, stream-based networking on top of IP. (Transport Layer)

 Unreliable, packet-based networking on top of IP. (Transport Layer)

Sending websites and data over the Internet. (Application Layer)

16

Vote in Zoom!

 = application layer = transport layer

 = network layer = link layer

TCP versus UDP

Transmission Control Protocol(TCP) User Datagram Protocol(UDP)

17

- Connection oriented Service

- Reliable and Ordered

- Flow control

- Connectionless service

- Unreliable packet delivery

- Faster

- No feedback

Sockets
- Just a file descriptor for network communication

- processes communicate with the outside through I/O operations
- sockets API enables access to the TCP/UDP transport protocol
- transport protocol provides abstraction of processes over network

- Types of Sockets
- Stream sockets (TCP)
- Datagram sockets (UDP)

- Each socket is associated with a port number and an IP address
- Both port and address are stored in network byte order (big endian)

18

File Descriptor Table

19

Sockets/Address

fam port addr zero

fam port flow addr scope

struct sockaddr_in (IPv4)

struct sockaddr_in6 (IPv6)

fam

struct sockaddr_storage

struct sockaddr (pointer to this struct is used as parameter type in system calls)

fam ????

16

28

Big enough to hold either

....

20

Byte Ordering and Endianness
- Network Byte Order (Big Endian)

- The most significant byte is stored in the highest address

- Host byte order
- Might be big or little endian, depending on the hardware

- To convert between orderings, we can use
- uint16_t htons (uint16_t hostlong);
- uint16_t ntohs (uint16_t hostlong);

- uint32_t htonl (uint32_t hostlong);
- uint32_t ntohl (uint32_t hostlong);

21

Exercise 2

22

client-side example

23

Figure out what IP address and port to talk
to. (getaddrinfo())

Create a socket. (socket())

Connect to the server. (connect())

Transfer data through the socket. (read()
and write()) (i.e. I/O with the peer
process to implement your application!)

Close the socket when done. (close())

1.

24

1. getaddrinfo()
- Performs a DNS Lookup for a hostname

int getaddrinfo(const char *hostname,
 const char *service,

 const struct addrinfo *hints,
 struct addrinfo **res);

25

1. getaddrinfo()
- Performs a DNS Lookup for a hostname

- Use “hints” to specify constraints (struct addrinfo *)

- Get back a linked list of struct addrinfo results

int getaddrinfo(const char *hostname,
 const char *service,

 const struct addrinfo *hints,
 struct addrinfo **res);

26

Network Addresses
● For IPv4, an IP address is a 4-byte tuple

○ e.g., 128.95.4.1 (80:5f:04:01 in hex)

● For IPv6, an IP address is a 16-byte tuple
○ e.g., 2d01:0db8:f188:0000:0000:0000:0000:1f33
○ 2d01:0db8:f188::1f33 in shorthand

27

DNS – Domain Name System/Service
● A hierarchical distributed naming system any resource connected to the Internet or

a private network.

● Resolves queries for names into IP addresses.

● The sockets API lets you convert between the two.
○ Aside: getnameinfo() is the inverse of getaddrinfo()

● Is on the application layer on the Internet protocol suite.

● POSIX form of resolving DNS names is getaddrinfo()
○ dig +trace attu.cs.washington.edu shown later

28

1. getaddrinfo() - Interpreting Results
struct addrinfo {

int ai_flags; // additional flags
int ai_family; // AF_INET, AF_INET6, AF_UNSPEC
int ai_socktype; // SOCK_STREAM, SOCK_DGRAM, 0
int ai_protocol; // IPPROTO_TCP, IPPROTO_UDP, 0
size_t ai_addrlen; // length of socket addr in bytes
struct sockaddr* ai_addr; // pointer to socket addr
char* ai_canonname; // canonical name
struct addrinfo* ai_next; // can form a linked list

};

- ai_addr points to a struct sockaddr describing the socket address

29

1. getaddrinfo() - Interpreting Results
With a struct sockaddr*:

- The field sa_family describes if it is IPv4 or IPv6

- Cast to struct sockaddr_in* (v4)or struct sockaddr_in6* (v6)

to access/modify specific fields

- Store results in a struct sockaddr_storage to have a space big enough for

either

30

2.

31

2. socket()
- Creates a “raw” socket, ready to be bound

- Returns file descriptor (sockfd) on success, -1 on failure

int socket(int domain, // AF_INET, AF_INET6
 int type, // SOCK_STREAM (TCP)
 int protocol); // 0

32

3.

33

3. connect()
- Connects an available socket to a specified address

- Returns 0 on success, -1 on failure

int connect (int sockfd, // from 2
 const struct sockaddr *serv_addr, // from 1
 socklen_t addrlen) ; // size of serv_addr

34

3. connect()
- Connects an available socket to a specified address

- Returns 0 on success, -1 on failure

Cast sockaddr_storage* to sockaddr* !

35

int connect (int sockfd, // from 2
 const struct sockaddr *serv_addr, // from 1
 socklen_t addrlen) ; // size of serv_addr

4. read/write and 5. close
- Thanks to the file descriptor abstraction, use as normal!
- read from and write to a buffer, the OS will take care of

sending/receiving data across the network
- Make sure to close the fd afterward

36

