
CSE 333
Section 7
HW3 Overview, Casting

1

Logistics
Friday, Feb 26:

HW3 @ 11 pm

2

Section Plan
● Casting
● HW 3 Overview

3

Casting in C++

Casting in C
● Types are enforced unless converted
● Casting is a conversion between data types
● Can cast with anything in C!

Implicit Casting
double a = 10.5;

int b = a;
Explicit Casting

double a = 10.5;

int b = (int) a;

Casting in C++
Four different casts that are more explicit and help prevent unintended errors:

1. static_cast<to_type>(expression)
2. dynamic_cast<to_type>(expression)
3. const_cast<to_type>(expression)
4. reinterpret_cast<to_type>(expression)

When programming in C++, you should use these casts!

6

Static Cast
static_cast<to_type>(expression)

Used to:
 1) Convert pointers of related types
 Base* b = static_cast<Base*>(new Derived);
 - compiler error if types aren't related

 2) Non-pointer conversion
 int qt = static_cast<int>(3.14);

7

Static Cast
static_cast<to_type>(expression)

[!] Be careful when casting down:
 Derived* d = static_cast<Derived*>(new Base);
 d->y = 5;
 - compiler will let you do this
 - dangerous if you want to do things defined in
 Derived, but not in Base!

8

Dynamic Cast
dynamic_cast<to_type>(expression)

Used to:
 1) Convert pointers of related types
 Base* b = dynamic_cast<Base*>(new Derived);
 - compiler error if types aren't related
 - at runtime, returns nullptr if it is actually an
 unsafe downwards cast:
 Derived* d = dynamic_cast<Derived*>(new Base);

9

Const Cast
const_cast<to_type>(expression)

Used to:
 1) Add or remove const-ness
 const int x = 5;
 const int *ro_ptr = &x
 int *ptr = const_cast<int*>(ro_ptr);

10

Reinterpret Cast
reinterpret_cast<to_type>(expression)

Used to:
 1) Cast between incompatible types
 int* ptr = 0xDEADBEEF;
 int64_t x = reinterpret_cast<int64_t>(ptr);
 - types must be of same size
 - does not do float-integer conversions

11

Exercise 1

12

13

reinterpret_cast<char *>

dynamic_cast<Derived *>

static_cast<Base *>

static_cast<int64_t>

HW 3 Overview!

14

Index File

15

Crawling a file tree in HW2 takes a long time.

To save time, write the completed DocTable and
MemIndex to a File!

Index File Components

16

Header (metadata)

DocTable

MemIndex

Index File Header

17

- magic_number: 0xCAFEF00D
- checksum: mathematical signature
- doctable_size: in bytes
- index_size: in bytes

Index File Header - HEX
1. Find a hex editor/viewer of your choice

• xxd <indexfile>

• hexdump –vC <indexfile>

• Pipe the output into a file or less to view

18

The header:
Magic word Checksum Doctable size Index size

man xxd
man hexdump

Byte Ordering and Endianness
• Network (Disk) Byte Order (Big Endian)

• The most significant byte is stored in the highest address

• Host byte order

• Might be big or little endian, depending on the hardware

• To convert between orderings, we can use

• uint32_t htonl (uint32_t hostlong); // host to network

• uint32_t ntohl (uint32_t hostlong); // network to host

• Pro-tip:
The structs in HW3 have toDiskFormat() and toHostFormat() functions that will convert
endianness for you.

19

20

DocTable & MemIndex
• At their core, both DocTable & MemIndex are HashTables.

• Lets first look at how we write a HashTable.

21

HashTable
• HashTable can have varying amount

of buckets, so start with
num_buckets.

22

• Buckets can be of
varying lengths. To know
the offset, we store some
bucket records.

Buckets
• A bucket is a list that

contains elements in the
table. Offset to a bucket is
found in a bucket record.

23

• Elements can be of various
sizes, so we need to store
element positions to know
where each element is.

DocTable & MemIndex
• At their core, both DocTable & MemIndex are HashTables.

• The difference between DocTable and MemIndex is entirely what type of element is
stored in them.

24

doctable

25

DocTable (Hex)

The header

Num buckets (Chain len Bucket offset)*

26

doctable

The buckets:

((Element offset)n (DocID Filename len Filename)n)*

27

doctable

28

index

29

docID table

30

The Full Picture

31

HW Tips
• When Writing, you should (almost) always:

1. .toDiskFormat()

2. fseek()

3. fwrite()

• When Reading, you should (almost) always:

1. fseek()

2. fread()

3. .toHostFormat()

• The most common bugs in the hw involve forgetting to change byte ordering, or
forgetting to fseek().

32

Actual directory:
/minidir
 /tinydir
 goodbye.txt
 hello.txt

Hex View Exercise
• Split up into break out rooms.

• Take a look at
https://courses.cs.washington.edu/courses/cse333/21wi/sections/sec07.idx

• Log into attu, use wget to download the file, then look into it.

• Try to figure out:
How many documents are in this index?
Which words are in each document?

34

https://courses.cs.washington.edu/courses/cse333/21wi/sections/sec07.idx

Hex View Exercise
• Split up into break out rooms.

• Take a look at
https://courses.cs.washington.edu/courses/cse333/20au/sections/sec06.idx

• Log into attu, use wget to download the file, then look into it.

• Try to figure out:
How many documents are in this index?
Which words are in each document?

• Answer: This index file was built off of test_tree/tiny

35

https://courses.cs.washington.edu/courses/cse333/20au/sections/sec06.idx

