
CSE 333 Section 6 - C++ Classes, Dynamic Memory
Welcome back to section! We’re glad that you’re here :)

Quick Class Review:
What do the following modifiers mean?

- public:
- protected:
- private:
- friend:

What is the default access modifier for a struct in C++?

Constructors, Destructors, what is going on?
- Constructor: Can define any number as long as they have different parameters.
Constructs a new instance of the class. The default constructor takes no arguments. - Copy
Constructor: Creates a new instance of the class based on another instance (it’s the
constructor that takes a reference to an object of the same class). Automatically invoked
when passing or returning a non-reference object to/from a function. - Assignment
Operator: Assigns the values of the right-hand-expression to the left-hand side instance.
- Destructor: Cleans up the class instance, i.e. free dynamically allocated memory used by

this class instance.

What happens if you don’t define a copy constructor? Or an assignment operator? Or a
destructor? Why might this be bad?

How can you disable the copy constructor/assignment operator/destructor?

When is the initialization list of a constructor run, and in what order are data members
initialized?

What happens if data members are not included in the initialization list?

1

Exercise 1) Give the output of the following program:

#include <iostream>
using namespace std;

class Int {
 public:
 Int() { ival_ = 17; cout << "default(" << ival_ << ")" << endl; } Int(int n) { ival_ = n; cout <<

"ctor(" << ival_ << ")" << endl; }

 Int(const Int &n) {
 ival_ = n.ival_;
 cout << "cctor(" << ival_ << ")" << endl;
 }

 ~Int() { cout << "dtor(" << ival_ << ")" << endl; }

 int get() const {
 cout << "get(" << ival_ << ")" << endl;
 return ival_;
 }

 void set(int n) {
 ival_ = n;
 cout << "set(" << ival_ << ")" << endl;
 }

 private:
 int ival_;
};

int main(int argc, char **argv) {
 Int p;
 Int q(p);
 Int r(5);
 q.set(p.get()+1);
 return EXIT_SUCCESS;
}

2
Object Construction and Initialization
Exercise 2)

#include <iostream>

using namespace std;

class Foo {
 public:
 Foo() { cout << 'u'; }
 Foo(int x) { cout << 'n'; }
 ~Foo() { cout << 'd'; }
};

class Bar {
 public:
Bar(int x) { other_ = new Foo(x); cout << 'g'; } ~Bar() { delete other_;

cout << 'e'; } private:
 Foo* other_;
};

class Baz {
 public:
Baz(int z) : bar_(z) { cout << 'r'; } ~Baz() { cout << 'a';
} private:
 Foo foo_;
 Bar bar_;
};

int main(){
 Baz (1);
 cout << endl; // to flush the buffer }

3
Dynamically-Allocated Memory: New and Delete
In C++, memory can be heap-allocated using the keywords “new” and “delete”. You can think
of these like malloc() and free() with some key differences:

● Unlike malloc() and free(), new and delete are operators, not functions. ● The
implementation of allocating heap space may vary between malloc and new.

New: Allocates the type on the heap, calling the specified constructor if it is a class type.
Syntax for arrays is “new type[num]”. Returns a pointer to the type.

Delete: Deallocates the type from the heap, calling the destructor if it is a class type. For
anything you called “new” on, you should at some point call “delete” to clean it up. Syntax for
arrays is “delete[] name”.

Just like baking soda and vinegar, you shouldn’t mix malloc/free with new/delete.

Exercise 3) Memory Leaks

#include <cstdlib>

class Leaky {
 public:
 Leaky() { x_ = new int(5); }
 private:
 int* x_;
};

int main(int argc, char** argv) {
 Leaky** lkyptr = new Leaky*;
 Leaky* lky = new Leaky();
 *lkyptr = lky;
 delete lkyptr;
 return EXIT_SUCCESS;
}

Draw a memory diagram of the program.

Assuming an instance of Leaky takes up 8 bytes (like a C-struct with just int* x_), how many
bytes of memory are leaked by this program? How would you fix the memory leaks?

4
Exercise 4) Identify the memory error with the following code.

class BadCopy {
 public:
 BadCopy() { arr_ = new int[5]; }
 ~BadCopy() { delete [] arr_; }
 private:
 int *arr_;
};

int main(int argc, char** argv) {
 BadCopy *bc1 = new BadCopy;
 BadCopy *bc2 = new BadCopy(*bc1); // BadCopy's cctor

 delete bc1;
 delete bc2;

 return EXIT_SUCCESS;
}

Draw a memory diagram of the program.

What happens when bc1 gets deleted?

5
Exercise 5) Classes usage. Consider the following classes:

class IntArrayList {
 public:
 IntArrayList()
 : array_(new int[MAXSIZE]), len_(0), maxsize_(MAXSIZE) { } IntArrayList(const int
*const arr, size_t len)
 : len_(len), maxsize_(len_*2) {
 array_ = new int[maxsize_];
 memcpy(array_, arr, len * sizeof(int));
 }

 IntArrayList(const IntArrayList &rhs) {
 len_ = rhs.len_;
 maxsize_ = rhs.maxsize_;
 array_ = new int[maxsize_];
 memcpy(array_, rhs.array_, maxsize_ * sizeof(int)); }
 // synthesized destructor
 // synthesized assignment operator

 private:
 int *array_;
 size_t len_;
 size_t maxsize_;
};

class Wrap {
 public:
 Wrap() : p_(nullptr) {}
 Wrap(IntArrayList *p) : p_(p) { *p_ = *p; }
 IntArrayList *p() const { return p_; }

 private:
 IntArrayList *p_;
};

struct List {
 IntArrayList v;
};

6
Here’s an example program using these classes:

int main(int argc, char** argv) {
 IntArrayList a;
 IntArrayList* b = new IntArrayList(); struct List l { a };
 struct List m { *b };
 Wrap w(b);
 delete b;
 return EXIT_SUCCESS;
}

Draw a memory diagram of the program:

How does the above program leak memory?

Fix the issue in the code above. You may write the solution here.

7
Extra Practice - Past Midterm Question

Consider the following (very unusual) C++ program which does compile and execute
successfully. Write the output produced when it is executed.

Hints​: Member variables are initialized in declaration order. Destruction order is the reverse of
construction order. The body of a constructor runs after its initializer list.

#include <iostream>
using namespace std;

class foo {
 public:
 foo() { cout << "p"; } // ctor foo(int i) { cout << "a"; } // ctor (1 int) foo(int i, int j) { cout << "h"; } // ctor (2 ints)

~foo() { cout << "s"; } // dtor };

class bar {
 public:
 bar(): foo_(new foo()) { cout << "g"; } // ctor bar(int i): foo_(new foo(i)) { cout << "p"; } // ctor (1 int) ~bar()
{ cout << "e"; delete foo_; } // dtor private:
 foo *foo_;
 foo otherfoo_;
};

class baz {
 public:
 baz(int a, int b, int c) : bar_(a), foo_(b,c)
 { cout << "i"; } // ctor (3 ints) ~baz() { cout << "n"; } // dtor private:
 foo foo_;
 bar bar_;
};

int main() {
 baz b(1,2,3);
 return EXIT_SUCCESS;
}

8

