
CSE 333 Section 5 - C++ Classes, Dynamic Memory
Welcome back to section! We’re glad that you’re here :)

Quick Class Review:
What do the following modifiers mean?

- public: Member is accessible by anyone

- protected: Member is accessible by this class and any derived classes.

- private: Member is only accessible by this class

- friend: Allows access of private and protected members to other functions and/or

classes

What is the default access modifier for a struct in C++?
A struct can be thought of as a class where all members are default public instead of default
private. In C++, it is also possible to give member functions (such as a constructor) to structs.

Constructors, Destructors, what is going on?
- Constructor: Can define any number as long as they have different parameters.

Constructs a new instance of the class. The default constructor takes no arguments.
- Copy Constructor: Creates a new instance of the class based on another instance (it’s

the constructor that takes a reference to an object of the same class). Automatically
invoked when passing or returning a non-reference object to/from a function.

- Assignment Operator: Assigns the values of the right-hand-expression to the left-hand-
side instance.

- Destructor: Cleans up the class instance, i.e. free dynamically allocated memory used
by this class instance.

What happens if you don’t define a copy constructor? Or an assignment operator? Or a
destructor? Why might this be bad? (Hint: What if a member of a class is a pointer to a heap-
allocated struct?)
In C++, if you don’t define any of these, a default one will be synthesized for you.

- The synthesized copy constructor does a shallow copy of all fields.
- The synthesized assignment operator does a shallow copy of all fields.
- The synthesized destructor calls the destructors of any fields that have them.

How can you disable the copy constructor/assignment operator/destructor?
Set their prototypes equal to the keyword “delete”: ~SomeClass() = delete;

When is the initialization list of a constructor run, and in what order are data members
initialized?

The initialization list is run before the body of the ctor, and data members are initialized in the
order that they are defined in the class, not by initialization list ordering

What happens if data members are not included in the initialization list?
Data members that don’t appear in the initialization list are default initialized/constructed before
the ctor body is executed. Including when there is no initialization list!

Exercise:
1) Give one possible output of the following program:

#include <iostream>
using namespace std;

class Int {
 public:
 Int() { ival_ = 17; cout << "default(" << ival_ << ")" << endl; }
 Int(int n) { ival_ = n; cout << "ctor(" << ival_ << ")" << endl; }
 Int(const Int &n) {
 ival_ = n.ival_;
 cout << "cctor(" << ival_ << ")" << endl;
 }
 ~Int() { cout << "dtor(" << ival_ << ")" << endl; }
 int get() const {
 cout << "get(" << ival_ << ")" << endl;
 return ival_;
 }
 void set(int n) {
 ival_ = n;
 cout << "set(" << ival_ << ")" << endl;
 }
 private:
 int ival_;
};

int main(int argc, char **argv) {
 Int p;
 Int q(p);
 Int r(5);
 q.set(p.get()+1);
 return EXIT_SUCCESS;
}

default(17)
cctor(17)
ctor(5)
get(17)
set(18)
dtor(5)
dtor(18)
dtor(17)

Object Construction and Initialization
Exercise 2)

#include <iostream>

using namespace std;

class Foo {
 public:
 Foo() { cout << 'u'; }
 Foo(int x) { cout << 'n'; }
 ~Foo() { cout << 'd'; }
};

class Bar {
 public:
 Bar(int x) { other_ = new Foo(x); cout << 'g'; }
 ~Bar() { delete other_; cout << 'e'; }
 private:
 Foo* other_;
};

class Baz {
 public:
 Baz(int z) : bar_(z) { cout << 'r'; }
 ~Baz() { cout << 'a'; }
 private:
 Foo foo_;
 Bar bar_;
};

int main(){
 Baz (1);
 cout << endl; // to flush the buffer
}

Constructing b as Baz(1) in main default constructs foo_ [u] since it is declared first, then

constructs bar_(1) which runs Foo(1) [n] and then runs its body [g]. We now run the ctor

body of Baz [r]. As we exit from main, b destructs, which runs the destructor body [a], then

destructs bar_, which calls delete on its Foo* member [d] before printing [e], then we destruct

b’s foo_ [d].

Dynamically-Allocated Memory: New and Delete
In C++, memory can be heap-allocated using the keywords “new” and “delete”. You can think

of these like malloc() and free() with some key differences:

● Unlike malloc() and free(), new and delete are operators, not functions.

● The implementation of allocating heap space may vary between malloc and new.

New: Allocates the type on the heap, calling the specified constructor if it is a class type.
Syntax for arrays is “new type[num]”. Returns a pointer to the type.

Delete: Deallocates the type from the heap, calling the destructor if it is a class type. For
anything you called “new” on, you should at some point call “delete” to clean it up. Syntax for

arrays is “delete[] name”.

Just like baking soda and vinegar, you shouldn’t mix malloc/free with new/delete.

Exercise 3) Memory Leaks

#include <cstdlib>

class Leaky {
 public:
 Leaky() { x_ = new int(5); }
 ~Leaky() { delete x_; } // Delete the allocated int
 private:
 int* x_;
};

int main(int argc, char** argv) {
 Leaky** lkyptr = new Leaky*;
 Leaky* lky = new Leaky();
 *lkyptr = lky;
 delete lkyptr;
 delete lky; // Delete of lkyptr doesn’t delete what lky points to
 return EXIT_SUCCESS;
}

Draw a memory diagram of the program:

Assuming an instance of Leaky takes up 8 bytes (like a C-struct with just int* x_), how many

bytes of memory are leaked by this program? How would you fix the memory leaks?

Leaks 12 bytes of memory: 8 bytes for the allocated Leaky object lky points to + 4 bytes for

the int the Leaky instance allocates in its constructor.

Deleting the lkyptr doesn’t automatically delete what the pointer points to. Have to also delete

lky and then create a destructor that deletes the allocated int pointer x_.

Exercise 4) Identify the memory error with the following code. Then fix it!

class BadCopy {
 public:
 BadCopy() { arr_ = new int[5]; }
 ~BadCopy() { delete [] arr_; }
 private:
 int *arr_;
};

int main(int argc, char** argv) {
 BadCopy *bc1 = new BadCopy;
 BadCopy *bc2 = new BadCopy(*bc1); // BadCopy's cctor

 delete bc1;
 delete bc2;

 return EXIT_SUCCESS;
}

Draw a memory diagram of the program:

What happens when bc1 gets deleted?

The default copy constructor does a shallow copy of the fields, so bc2’s arr_ points to the

same array as bc1’s arr_. When bc1 gets deleted, so does its arr_. But this arr_ is the

same one bc2’s arr_ points to, so when bc2 gets deleted, its arr_ has already been deleted,

leading to an invalid delete (similar to a double free()).

5) Classes usage. Consider the following classes:

class IntArrayList {
 public:
 IntArrayList()
 : array_(new int[MAXSIZE]), len_(0), maxsize_(MAXSIZE) { }
 IntArrayList(const int *const arr, size_t len)
 : len_(len), maxsize_(len_*2) {
 array_ = new int[maxsize_];
 memcpy(array_, arr, len * sizeof(int));
 }

 IntArrayList(const IntArrayList &rhs) {
 len_ = rhs.len_;
 maxsize_ = rhs.maxsize_;
 array_ = new int[maxsize_];
 memcpy(array_, rhs.array_, maxsize_ * sizeof(int));
 }
 // synthesized destructor
 // synthesized assignment operator

 private:
 int *array_;
 size_t len_;
 size_t maxsize_;
};

class Wrap {
 public:
 Wrap() : p_(nullptr) {}
 Wrap(IntArrayList *p) : p_(p) { *p_ = *p; }
 IntArrayList *p() const { return p_; }
 private:
 IntArrayList *p_;
};

struct List {
 IntArrayList v;
};

Here’s an example program using these classes:

int main(int argc, char** argv) {
 IntArrayList a;
 IntArrayList* b = new IntArrayList();
 struct List l { a };
 struct List m { *b };
 Wrap w(b);
 delete b;
 return EXIT_SUCCESS;
}

Draw a memory diagram of the program:

How does the above program leak memory?
The synthesized destructor does not know how to delete an array, so IntArrayList a will

leak. Similarly, synthesized destructor does not know how to delete b’s array, so

IntArrayList* b will leak. struct List l copies a’s contents using the copy constructor,

and when it gets deleted it calls IntArrayList’s destructor, which doesn’t know how to delete

an array, so this will leak too. struct List m copies what b points to into its own field using

the copy constructor, when it gets deleted it does the same thing as struct List l and

leaks. Wrap w just copies the pointer, and the synthesized assignment operator shallow copies

the fields, so w just points to what b points to through its field p_.

Fix the issue in the code above. You may write the solution here.

Implement the destructor:
IntArrayList::~IntArrayList() { delete[] array_; }

Extra Practice - Past Midterm Question

Consider the following (very unusual) C++ program which does compile and execute
successfully. Write the output produced when it is executed.

#include <iostream>
using namespace std;

class foo {
 public:
 foo() { cout << "p"; } // ctor
 foo(int i) { cout << "a"; } // ctor (1 int)
 foo(int i, int j) { cout << "h"; } // ctor (2
ints)
 ~foo() { cout << "s"; } // dtor
};

class bar {
 public:
 bar(): foo_(new foo()) { cout << "g"; } // ctor
 bar(int i): foo_(new foo(i)) { cout << "p"; } // ctor (1 int)
 ~bar() { cout << "e"; delete foo_; } // dtor
 private:
 foo *foo_;
 foo otherfoo_;
};

class baz {
 public:
 baz(int a,int b,int c) : bar_(a), foo_(b,c)
 { cout << "i"; } // ctor (3
ints)
 ~baz() { cout << "n"; } // dtor
 private:
 foo foo_;
 bar bar_;
};

int main() {
 baz b(1,2,3);
 return EXIT_SUCCESS;
}
"happinesss" (yes, with 3 s’s):

Constructing b constructs foo_(2,3) first [h], then bar_(1), which initializes foo_ (a pointer,

not an object) to new foo(1) [a] and default constructs otherfoo_ [p] before printing [p].

The body of b’s constructor then prints [i]. As we exit from main, b destructs, which runs the

destructor body [n] before destructing bar_, which prints [e] before deleting the unnamed

foo(1) [s] pointed to by foo_ and then destructing otherfoo_ [s]. Finally, foo_ in b is

destructed [s].

