
C++ continued
C++ Classes and Dynamic Memory

1

Logistics
Friday Feb 12 (tomorrow)

Exercise 07 @ 10:00 am
Saturday Feb 13

HW2 @ 11:00 pm (If you need more time, just email)

2

Section Plan - Lots of Review and Practice Today!
● C++ Classes (more)

○ constructor and destructor ordering
○ ctor, cctor, dtor, op=

○ Dynamic Memory
○ new and delete
○ Drawing memory diagrams :)

3

C++ Classes

4

Constructors Revisited
class Int {
 public:
 Int() { ival = 17; cout << "default(" << ival << ")" << endl; }
 Int(int n) { ival = n; cout << "ctor(" << ival << ")" << endl; }
 Int(const Int &n) {
 ival = n.ival;
 cout << "cctor(" << ival << ")" << endl;
 }
 ~Int() { cout << "dtor(" << ival << ")" << endl; }
};

● Copy Constructor (cctor): Creates a new instance based on another instance (must take a
reference!). Invoked when passing/returning a non-reference object to/from a function.

● Destructor (dtor): Cleans up the class instance. Deletes dynamically allocated memory (if
any). 5

● Constructor (ctor): Can define any number as long as they have different parameters.
Constructs a new instance of the class.

What is getting called here?

int main() {
 Int p; // 1.
 Int q(p); // 2.
 Int r(5); // 3.
 Int s = r; // 4.
 p = s; // 5.
}

default ctor
copy ctor
1 arg ctor
copy ctor (cctor)
assignment operator

ival_ = 17

p

ival_ = 17

q

ival_ = 5

r

ival_ = 5

s

ival_ = 5

6

Design Discussion
● What happens if you don’t define a copy constructor? Or an assignment

operator? Or a destructor? Why might this be bad?

● How can you disable the copy constructor/assignment operator/destructor?

- In C++, if you don’t define any of these, a default one will be synthesized
for you.

- The default copy constructor does a shallow copy of all fields.
- The default assignment operator does a shallow copy of all fields.
- The default destructor calls the default destructors of any fields that have

them.

Set their prototypes equal to the keyword “delete”: ~SomeClass() = delete;

7

Destructors Review

8

When are destructors invoked? In what order are they invoked when multiple
objects are getting destructed?

- An object’s destructors is run when it falls out of scope, or when the
delete keyword is used on heap allocated objects constructed with new

- Invoked in reverse order of construction

What happens when a destructor actually executes? (Hint: what happens if a
dtor body doesn’t destruct all its members?)

- Destructors are run in reverse order of construction: (1) run destructor
body (2) destruct remaining members in reverse order of declaration

When are these destructors run?

int main() {
 Int p;
 Int q(p);
 Int r(5);
 Int s = r;
 p = s;
}

ival_ = 5

p

ival_ = ?

q

ival_ = 5

r

ival_ = 5

s

s dtor run

r dtor run

q dtor run

p dtor run

9

Initialization Lists
When is the initialization list of a constructor run, and in what order are data
members initialized?

What happens if data members are not included in the initialization list?

The initialization list is run before the body of the ctor, and data
members are initialized in the order that they are defined in the class,
not by initialization list ordering

Data members that don’t appear in the initialization list are default
initialized/constructed before ctor body is executed.

10

Steps for Construction and Destruction
Construction:
1. Construct/initialize members in order of declaration:

- If: member appears in initialization list, apply initialization
- Else: default initialize

1. Run constructor body

Destruction:
1. Run destructor body
2. Destruct remaining members in reverse order of member declaration

Exercise 1: Constructors and Destructors!

int main(int argc, char **argv) {
 Int p;
 Int q(p);
 Int r(5);
 q.set(p.get()+1);
 return EXIT_SUCCESS;
}

default(17)
cctor(17)
ctor(5)
get(17)
set(18)
dtor(5)
dtor(18)
dtor(17)

Dynamic Memory

13

New and Delete operators
New: Allocates the type on the heap, calling the specified constructor if it is a
class type. Syntax:

type* ptr = new type;

type* heap_arr = new type[num];

Delete: Deallocates the type from the heap, calling the destructor if it is a class
type. For anything you called “new” on, you should at some point call “delete” to
clean it up. Syntax:

delete ptr;

delete[] heap_arr;
14

Exercise 3: Memory Leaks
class Leaky {
 public:
 Leaky() { x_ = new int(5); }
 private:
 int *x_;
};
int main(int argc, char **argv) {
 Leaky **lkyptr = new Leaky *;
 Leaky *lky = new Leaky();
 *lkyptr = lky;
 delete lkyptr;
 return EXIT_SUCCESS;
}

15

0x602010

lkyptr

stack heap

0x602030

lky

x_

 0x00x602030

0x602050

5

class BadCopy {
 public:
 BadCopy() { arr_ = new int[5]; }
 ~BadCopy() { delete [] arr_; }
 private:
 int *arr_;
};

int main(int argc, char** argv) {
 BadCopy *bc1 = new BadCopy;
 BadCopy *bc2 = new BadCopy(*bc1); // cctor
 delete bc1;
 delete bc2;
 return EXIT_SUCCESS;
}

bc1 bc2

arr_ arr_

Invalid delete: BAD

Exercise 4: Bad Copy

as if!!

16

Exercise 5: Classes Usage

17

Question 5

18

……

……

Question 5

19

……

……

Question 5

20

……

……

