
CSE 333 – Section 5: C++ Intro
Welcome back to section! We’re glad that you’re here :)

References
References create ​aliases​ that we can bind to existing variables. References are not separate
variables and cannot be reassigned after they are initialized. In C++, you define a reference using:
type &name = var​. The ‘​& ​’ is similar to the ‘​* ​’ in a pointer definition in that it modifies the type and
the space can come before or after it.

Const
Const makes a variable ​unchangeable​ after initialization, and is enforced at compile time.

Class objects can be declared const too - a const class object can only call member functions that
have been declared as const, which are not allowed to modify the object instance it is being called on.

Exercises​:
1) Consider the following functions and variable declarations.

a) Draw a memory diagram for the variables declared in ​main​. It might be helpful to
distinguish variables that are constant in your memory diagram.

b) When would you prefer ​void func(int &arg);​ to ​void func(int *arg);​?

Expand on this distinction for other types besides ​int​.

1

const int x = 5; // Can’t assign to x

const int* xptr = &x; // Can assign to xptr, but not *xptr

int *const yptr = &y; // Can assign to *yptr, but not yptr

const int *const zptr = &z; // Can’t assign to *zptr or zptr

int main(int argc, char **argv) {

 int x = 5;

 int &refx = x;

 const int &ro_refx = refx;

 int y = 0;

 int *ptry = &y;

 const int *ro_ptr1 = &y;

 int *const ro_ptr2 = &y;

 // ...

}

c) If we have functions ​void foo(const int &arg);​ and​ void bar(int &arg);​,
what does the compiler think about the following lines of code:

d) How about this code?

2) Extra practice: What does the following program print out? ​ ​Hint​: box-and-arrow diagram!

int ​main​(int argc, char** argv) {
 int x = 1; ​// assume &x = 0x7ff...94
 int& rx = x;

 int* px = &x;

 int*& rpx = px;

 rx = 2;

 *rpx = 3;

 px += 4;

 cout << " x: " << x << endl;

 cout << " rx: " << rx << endl;

 cout << "*px: " << *px << endl;

 cout << " &x: " << &x << endl;

 cout << "rpx: " << rpx << endl;

 cout << "*rpx: " << *rpx << endl;

 return EXIT_SUCCESS;

}

2

bar(refx);

bar(ro_refx);

foo(refx);

ro_ptr1 = (int*)0xDEADBEEF;

ro_ptr2 = ro_ptr2 + 2;

*ro_ptr1 = *ro_ptr1 + 1;

3) Refer to the following ​poorly-written​ class declaration.

class MultChoice {

 public:

 ​MultChoice​(int q, char resp) : q_(q), resp_(resp) { } ​// 2-arg ctor
 int ​get_q​() const { return q_; }
 char ​get_resp​() { return resp_; }
 bool ​Compare​(MultChoice &mc) const; ​// do these MultChoice's match?

 private:

 int q_; ​// question number
 char resp_; ​// response: 'A','B','C','D', or 'E'
}; ​// class MultChoice

a) Indicate (​Y​/​N​) which ​lines​ of the snippets of code below (if any) would cause compiler errors:

b) What would you change about the class declaration to make it better? Feel free to mark

directly on the class declaration above.

3

Code Snippets Error? Code Snippets Error?

int z = 5;

const int *x = &z;

int *y = &z;

x = y;

*x = *y;

 int z = 5;

int *const w = &z;

const int *const v = &z;

*v = *w;

*w = *v;

const MultChoice m1(1,'A');

MultChoice m2(2,'B');

cout << m1. ​get_resp​();
cout << m2. ​get_q​();

 const MultChoice m1(1,'A');

MultChoice m2(2,'B');

m1. ​Compare​(m2);
m2. ​Compare​(m1);

4) Mystery Functions ​(EXTRA PRACTICE)
Consider the following C++ code, which has ​__???__​ in the place of 3 function names in ​main ​:

struct Thing {

 int a;

 bool b;

};

void ​PrintThing​(const Thing& t) {
 cout << boolalpha << "Thing: " << t.a << ", " << t.b << endl;

}

int ​main​() {
 Thing foo = {5, true};

 cout << "(0) ";

 PrintThing(foo);

 cout << "(1) ";

 ​__???__​(foo); ​// mystery 1
 PrintThing(foo);

 cout << "(2) ";

 ​__???__​(&foo); ​// mystery 2
 PrintThing(foo);

 cout << "(3) ";

 ​__???__​(foo); ​// mystery 3
 PrintThing(foo);

 return 0;

}

List ​all​ of the possible functions (​f1​ - ​f5​) that could have been called at each of the three mystery
points in the program that would compile cleanly (no errors) and could have produced the results
shown. There is at least one possibility at each point; there might be more.

● Hint​: look at parameter lists and types in the function declarations and in the calls.

4

Program Output:
(0) Thing: 5, true

(1) Thing: 6, false

(2) Thing: 3, true

(3) Thing: 3, true

Possible Functions:
void ​f1​(Thing t);
void ​f2​(Thing &t);
void ​f3​(Thing *t);
void ​f4​(const Thing &t);
void ​f5​(const Thing t);

5) Building a Rectangle

Define a class Rectangle that has two member variables that are two Point Objects. These two points
will be used to represent the upper left and lower right corners of the rectangle. The declaration of the
point class is given below:

class Point {
 public:
 // Constructs a point that represents the Cartesian point (x, y)
 Point(int x, int y);

 // Returns the x component of this point.
 int get_x() { return x_; }

 // Returns the y component of this point.
 int get_y() { return y_; }

 // Returns the distance between this point and the provided point.
 double Distance(Point & p);

 // Sets the current point to represent the passed in coordinates.
 void SetLocation(int x, int y);

 private:
 int x_, y_;
};

Be sure that you follow good c++ practices, and use const appropriately. Your rectangle class should
contain the following methods:

● at least one constructor
● getul()​ and ​getlr() ​- getters that return the upper-left and lower-right corners of the rectangle
● area() ​- returns the Rectangle's area.
● contains(Point &p) ​- returns true iff the point is inside the rectangle, and false otherwise.

5

