
CSE 333 – SECTION 5
C++ Classes, Const and References;

Some slides referenced from CSE 333 -Winter 2018 slides

1

Logistics
Friday (tomorrow)

Exercise 6 @ 10:00 am

Friday (1 week from now):
HW2 @ 11:00 pm

Mid-quarter Survey

2

Section Plan
● C++ const/reference refresher
● References Problem
● C++ Classes
● Mult-Choice Problem
● STL

3

Example
● Consider the following code:

int x = 5;

int &refx = x;

int *ptrx = &x;

5

Similar in syntax to the *
in pointer declarations

x, refx 5

0x7fff...ptrx

Legend

Red Thing = “can’t change
the box it’s next to”
Black = “writeable/readable”

What are some tradeoffs to using pointers vs references?

4

Difference between declaring reference and
'address of' operator.

& in type declaration is for reference declaration.
Elsewhere it is 'address of'

Summary
● Pointers vs. References:

Pointers References

Can move to different data via
reassignment/pointer arithmetic

References the same data for its entire
lifetime

Can be initialized to NULL No sensible “default reference”

Used for output parameters
e.g. MyClass* output

Used for input parameters
e.g. const MyClass& input

5

When would you prefer reference to
pointer as function parameters?

- When you don’t want to deal with pointer semantics, use references
- When you don’t want to copy stuff over (doesn’t create a copy,

especially for parameters and/or return values), use references
- Style wise, we want to use references for input parameters and

pointers for output parameters, with the output parameters
declared last

6

Const

● Mark a variable with const to make a compile time check that a variable is
never reassigned

● Does not change the underlying write-permissions for this variable

int x = 42;

const int* ro_ptr = &x; // Read only

int* rw_ptr = &x; // x can still be modified with rw_ptr!

int* const ptr = &x; // Only ever points to x

7

Example (Ex 1)
● Consider the following code:

int x = 5, y = 0;

int &refx = x;

const int &ro_refx = x;

int *ptry = &y;

const int *ro_ptr1 = &y;

int *const ro_ptr2 = &y;

5x, refx,

0x7fff... ptry

ro_ptr10x7fff...

0x7fff... ro_ptr2

“Const pointer to an int”

“Pointer to a const int”

ro_refx

Tip: Read the declaration “right-to-left”

Legend

Red Thing = “can’t change
the box it’s next to”
Black = “writeable/readable”

8

0y

Example (Ex 1)
● Consider the following code:

int x = 5, y = 0;

int &refx = x;

const int &ro_refx = x;

int *ptry = &y;

const int *ro_ptr1 = &y;

int *const ro_ptr2 = &y;

5x, refx,

0x7fff... ptry

ro_ptr10x7fff...

0x7fff... ro_ptr2

ro_refx

Tip: Read the declaration “right-to-left”

Legend

Red Thing = “can’t change
the box it’s next to”
Black = “writeable/readable”

9

0y

Example (Ex 1)
● Consider the following code:

int x = 5, y = 0;

int &refx = x;

const int &ro_refx = x;

int *ptry = &y;

const int *ro_ptr1 = &y;

int *const ro_ptr2 = &y;

5x, refx,

0x7fff... ptry

ro_ptr10x7fff...

0x7fff... ro_ptr2

ro_refx

Legend

Red Thing = “can’t change
the box it’s next to”
Black = “writeable/readable”

10

0y

bar(refx);

bar(ro_refx);

foo(refx);

ok

Error

ok

void foo(const int &arg);
void bar(int &arg);

ro_ptr1 = (int*)0xDEADBEEF;

ro_ptr2 = ro_ptr2 + 2;

*ro_ptr1 = *ro_ptr1 + 1;

Example (Ex 1)
● Consider the following code:

int x = 5, y = 0;

int &refx = x;

const int &ro_refx = x;

int *ptry = &y;

const int *ro_ptr1 = &y;

int *const ro_ptr2 = &y;

5x, refx,

0x7fff... ptry

ro_ptr10x7fff...

0x7fff... ro_ptr2

ro_refx

Legend

Red Thing = “can’t change
the box it’s next to”
Black = “writeable/readable”

11

0y

ok

Error

Error

C++ Classes

12

Class Organization

13

class Point {
 public:
 Point(int x, int y);
 int get_x() { return x_; }
 int get_y() { return y_; }
 double Distance(Point & p);
 void SetLocation(int x, int y);
 private:
 int x_;
 int y_;
};

Point::Point(int x, int y){
 x_ = x;
 this->y_ = y;
}

double Point::Distance(Point &p){
 double xdiff = pow(x_ - p.x_, 2);
 double ydiff = pow(y_ - p.y_, 2);
 return sqrt(xdiff + ydiff);
}

void Point::SetLocation(int x, int y){
 x_ = x;
 this->y_ = y;
}

Point.h Point.cc

Class declaration goes in Point.h,
implementation goes in Point.cc.

Class .h files

14

class Point {
 public:
 Point(int x, int y);
 int get_x() { return x_; }
 int get_y() { return y_; }
 double Distance(Point & p);
 void SetLocation(int x, int y);
 private:
 int x_;
 int y_;
};

Point.h

● Includes the class declaration.

● Can specify member functions and
variables and whether they are
public/private

● Can have implementation of functions,
usually only done with simple functions
(e.g. getters)

Class .cc files

15

Point::Point(int x, int y){
 x_ = x;
 this->y_ = y;
}

double Point::Distance(Point &p){
 double xdiff = pow(x_ - p.x_, 2);
 double ydiff = pow(y_ - p.y_, 2);
 return sqrt(xdiff + ydiff);
}

void Point::SetLocation(int x, int y){
 x_ = x;
 this->y_ = y;
}

Point.cc

Contains member function definitions.
These are indicated by:
Class_Name::Func_name(){

If not specified as part of the class, it
cannot access private class members,
and probably won't compile.

What about “const” object methods?

16

Cannot mutate the
object it’s called on.
Trying to change x_
or y_ inside will
cause a compiler
error!

17

Exercise 3

Code Error? Code Error?

int z = 5;
const int *x = &z;
int *y = &z;
x = y;
*x = *y;

int z = 5;
int *const w = &z;
const int *const v =
&z;
*v = *w;
*w = *v;

18

Exercise 3

Code Error? Code Error?

int z = 5;
const int *x = &z;
int *y = &z;
x = y;
*x = *y;

N
N
N
N
Y

int z = 5;
int *const w = &z;
const int *const v =
&z;
*v = *w;
*w = *v;

N
N
N
Y
N

19

Exercise 3

Code Error? Code Error?

const MultChoice m1(1,'A');
MultChoice m2(2,'B');
cout << m1.get_resp();
cout << m2.get_q();

const MultChoice m1(1,'A');
MultChoice m2(2,'B');
m1.Compare(m2);
m2.Compare(m1);

20

Exercise 3

Code Error? Code Error?

const MultChoice m1(1,'A');
MultChoice m2(2,'B');
cout << m1.get_resp();
cout << m2.get_q();

N
N
Y
N

const MultChoice m1(1,'A');
MultChoice m2(2,'B');
m1.Compare(m2);
m2.Compare(m1);

N
N
N
Y

21

What would you change about the class declaration to make it better?

22

C++ STL

23

Templates
● C++ supports templates to facilitate generic data types

○ Parametric polymorphism - similar to Java generics but different in details (mainly
implementation)

○ Example:
■ vector<int> x
■ vector<string> x
■ vector<vector<float>> x

24

vector of ints
vector of strings
vector of (vectors of floats)

STL (Standard Template Library)
● Set of C++ template classes that provide common programming functionality

○ A string class
○ Generic containers: queue, list, stack, vector, bitset, associative array, deque, and set

■ Iterators
■ Algorithms

○ And much more...

25

STL vector
● A generic, dynamically resizable array
● http://www.cplusplus.com/reference/stl/vector/vector/
● Elements are stored in contiguous memory locations

■ Elements can be accessed using pointer arithmetic if you’d like
■ Random access is O(1) time

● Adding/removing from the end is cheap (amortized constant time)
● Inserting/deleting from the middle or start is expensive (linear time)

26

http://www.cplusplus.com/reference/stl/vector/vector/

STL iterator
● Each container has an iterator class
● http://www.cplusplus.com/reference/std/iterator/
● Ranges from begin to end

○ [begin, end)

27

http://www.cplusplus.com/reference/stl/vector/vector/

