
CSE 333 – SECTION 5
C++ Classes, Const and References; 

Some slides referenced from CSE 333 -Winter 2018 slides
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Logistics
Friday (tomorrow)

Exercise 6 @ 10:00 am

Friday (1 week from now):
HW2 @ 11:00 pm

Mid-quarter Survey
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Section Plan
● C++ const/reference refresher
● References Problem
● C++ Classes 
● Mult-Choice Problem
● STL
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Example
● Consider the following code:

int x = 5;

int &refx = x;

int *ptrx = &x;

5

Similar in syntax to the * 
in pointer declarations

x, refx 5

0x7fff...ptrx

Legend

Red Thing = “can’t change 
the box it’s next to”
Black = “writeable/readable”

What are some tradeoffs to using pointers vs references?
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Difference between declaring reference and 
'address of' operator.

& in type declaration is for reference declaration.
Elsewhere it is 'address of' 



Summary
● Pointers vs. References: 

Pointers References

Can move to different data via 
reassignment/pointer arithmetic

References the same data for its entire 
lifetime

Can be initialized to NULL No sensible “default reference”

Used for output parameters
e.g. MyClass* output

Used for input parameters
e.g. const MyClass& input
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When would you prefer reference to 
pointer as function parameters?

- When you don’t want to deal with pointer semantics, use references
- When you don’t want to copy stuff over (doesn’t create a copy, 

especially for parameters and/or return values), use references
- Style wise, we want to use references for input parameters and 

pointers for output parameters, with the output parameters 
declared last
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Const

● Mark a variable with const to make a compile time check that a variable is 
never reassigned

● Does not change the underlying write-permissions for this variable

int x = 42;

const int* ro_ptr = &x;  // Read only 

int* rw_ptr = &x;  // x can still be modified with rw_ptr!

int* const ptr = &x;  // Only ever points to x
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Example (Ex 1)
● Consider the following code:

int x = 5, y = 0;

int &refx = x;

const int &ro_refx = x;

int *ptry = &y;

const int *ro_ptr1 = &y;

int *const ro_ptr2 = &y;

5x, refx,

0x7fff... ptry

ro_ptr10x7fff...

0x7fff... ro_ptr2

“Const pointer to an int”

“Pointer to a const int”

ro_refx

Tip: Read the declaration “right-to-left” 

Legend

Red Thing = “can’t change 
the box it’s next to”
Black = “writeable/readable”
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Example (Ex 1)
● Consider the following code:

int x = 5, y = 0;

int &refx = x;

const int &ro_refx = x;

int *ptry = &y;

const int *ro_ptr1 = &y;

int *const ro_ptr2 = &y;

5x, refx,

0x7fff... ptry

ro_ptr10x7fff...

0x7fff... ro_ptr2

ro_refx

Tip: Read the declaration “right-to-left” 

Legend

Red Thing = “can’t change 
the box it’s next to”
Black = “writeable/readable”
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Example (Ex 1)
● Consider the following code:

int x = 5, y = 0;

int &refx = x;

const int &ro_refx = x;

int *ptry = &y;

const int *ro_ptr1 = &y;

int *const ro_ptr2 = &y;

5x, refx,

0x7fff... ptry

ro_ptr10x7fff...

0x7fff... ro_ptr2

ro_refx

Legend

Red Thing = “can’t change 
the box it’s next to”
Black = “writeable/readable”
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bar(refx);

bar(ro_refx);

foo(refx);

ok

Error

ok

void foo(const int &arg);
void bar(int &arg);



ro_ptr1 = (int*)0xDEADBEEF;

ro_ptr2 = ro_ptr2 + 2;

*ro_ptr1 = *ro_ptr1 + 1;

Example (Ex 1)
● Consider the following code:

int x = 5, y = 0;

int &refx = x;

const int &ro_refx = x;

int *ptry = &y;

const int *ro_ptr1 = &y;

int *const ro_ptr2 = &y;

5x, refx,

0x7fff... ptry

ro_ptr10x7fff...

0x7fff... ro_ptr2

ro_refx

Legend

Red Thing = “can’t change 
the box it’s next to”
Black = “writeable/readable”

11

0y

ok

Error

Error



C++ Classes
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Class Organization
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class Point {
 public:
  Point(int x, int y);
  int get_x() { return x_; }
  int get_y() { return y_; }
  double Distance(Point & p);
  void SetLocation(int x, int y);
 private:
  int x_;
  int y_;
};

Point::Point(int x, int y){
  x_ = x;
  this->y_ = y;
}

double Point::Distance(Point &p){
  double xdiff = pow(x_ - p.x_, 2);
  double ydiff = pow(y_ - p.y_, 2);
  return sqrt(xdiff + ydiff);
}

void Point::SetLocation(int x, int y){
  x_ = x;
  this->y_ = y;
}

Point.h Point.cc

Class declaration goes in Point.h, 
implementation goes in Point.cc.



Class .h files
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class Point {
 public:
  Point(int x, int y);
  int get_x() { return x_; }
  int get_y() { return y_; }
  double Distance(Point & p);
  void SetLocation(int x, int y);
 private:
  int x_;
  int y_;
};

Point.h

● Includes the class declaration.

● Can specify member functions and 
variables and whether they are 
public/private

● Can have implementation of functions, 
usually only done with simple functions
(e.g. getters)



Class .cc files
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Point::Point(int x, int y){
  x_ = x;
  this->y_ = y;
}

double Point::Distance(Point &p){
  double xdiff = pow(x_ - p.x_, 2);
  double ydiff = pow(y_ - p.y_, 2);
  return sqrt(xdiff + ydiff);
}

void Point::SetLocation(int x, int y){
  x_ = x;
  this->y_ = y;
}

Point.cc

Contains member function definitions.
These are indicated by:
Class_Name::Func_name(){

If not specified as part of the class, it 
cannot access private class members, 
and probably won't compile.



What about “const” object methods? 
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Cannot mutate the 
object it’s called on.
Trying to change x_ 
or y_ inside will 
cause a compiler 
error!
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Exercise 3

Code Error? Code Error?

int z = 5;
const int *x = &z;
int *y = &z;
x = y;
*x = *y;

int z = 5;
int *const w = &z;
const int *const v = 
&z;
*v = *w;
*w = *v;
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Exercise 3

Code Error? Code Error?

int z = 5;
const int *x = &z;
int *y = &z;
x = y;
*x = *y;

N
N
N
N
Y

int z = 5;
int *const w = &z;
const int *const v = 
&z;
*v = *w;
*w = *v;

N
N
N
Y
N
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Exercise 3

Code Error? Code Error?

const MultChoice m1(1,'A');
MultChoice m2(2,'B');
cout << m1.get_resp();
cout << m2.get_q();

const MultChoice m1(1,'A');
MultChoice m2(2,'B');
m1.Compare(m2);
m2.Compare(m1);

20



Exercise 3

Code Error? Code Error?

const MultChoice m1(1,'A');
MultChoice m2(2,'B');
cout << m1.get_resp();
cout << m2.get_q();

N
N
Y
N

const MultChoice m1(1,'A');
MultChoice m2(2,'B');
m1.Compare(m2);
m2.Compare(m1);

N
N
N
Y
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What would you change about the class declaration to make it better?
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C++ STL
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Templates
● C++ supports templates to facilitate generic data types

○ Parametric polymorphism - similar to Java generics but different in details (mainly 
implementation)

○ Example:
■ vector<int> x
■ vector<string> x
■ vector<vector<float>> x
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vector of ints
vector of strings
vector of (vectors of floats)



STL (Standard Template Library)
● Set of C++ template classes that provide common programming functionality

○ A string class
○ Generic containers: queue, list, stack, vector, bitset, associative array, deque, and set

■ Iterators
■ Algorithms

○ And much more...
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STL vector
● A generic, dynamically resizable array
● http://www.cplusplus.com/reference/stl/vector/vector/
● Elements are stored in contiguous memory locations

■ Elements can be accessed using pointer arithmetic if you’d like
■ Random access is O(1) time

● Adding/removing from the end is cheap (amortized constant time)
● Inserting/deleting from the middle or start is expensive (linear time)
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http://www.cplusplus.com/reference/stl/vector/vector/


STL iterator
● Each container has an iterator class
● http://www.cplusplus.com/reference/std/iterator/
● Ranges from begin to end

○ [begin, end)
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http://www.cplusplus.com/reference/stl/vector/vector/

