
CSE 333 Section 3 - POSIX I/O Functions
Welcome back to section! We’re glad that you’re here :)

POSIX
Posix is a family of standards specified by the IEEE. These standards maintain compatibility
across variants of Unix-like operating systems by defining APIs and standards for basic I/O (file,
terminal, and network) and for threading.

1) What does POSIX stand for?

2) Why might a POSIX standard be beneficial? From an application perspective? Versus using

the C stdio library?

POSIX and Files
File I/O using POSIX is similar to file I/O using the C stdio library. Some of the operations that
can be performed on files using Posix systems calls are: opening a file, reading from a file,
writing to a file, closing a file.

int​ ​open​(​char​* name, ​int​ flags, ​mode_t​ mode);
➔ name​ is a string representing the name of the file. Can be relative or absolute.
➔ flags​ is an integer code describing the access. Some common flags are listed

below:
◆ O_RDONLY –​ Open the file in read-only mode.
◆ O_WRONLY –​ Open the file in write-only mode.
◆ O_RDWR –​ Open the file in read-write mode.
◆ O_APPEND –​ Append new information to the end of the file.

★ Returns an integer which is the file descriptor. Returns ​-1​ if there is a failure.

int​ ​close​(​int​ fd);
➔ fd​ is the file descriptor (as returned by ​open()​).
★ Returns ​0​ on success, ​-1​ on failure.

ssize_t​ ​read​(​int​ fd, ​void​ *buf, ​size_t​ count);

ssize_t​ ​write​(​int​ fd, const ​void​ *buf, ​size_t​ count);
➔ fd​ is the file descriptor (as returned by open()).
➔ buf​ is the address of a memory area into which the data is read or written.
➔ count​ is the ​maximum​ amount of data to read from or write to the stream.
★ Returns the ​actual​ amount of data read from or written to the file.

Exercises:
3) A common use of the POSIX I/O function is to ​write ​to a file; fill in the code skeleton below

that writes all of the contents of a string ​buf ​ to the file ​333.txt ​. ​You must use a different
method than the “bytes_left” method shown in lecture.

int fd = ​ ​__​; // ​open 333.txt
int n =;

char *buf = ; // ​Assume buf initialized with size n
int result;

______________________________​; ​ ​ // ​initialize variable for loop

... // ​code that populates buf happens here

while (​_______________________​) {

 result = write(​_______​,_______________,_______________________);

 if (result == -1) {

 if (errno != EINTR) {

 ​// a real error happened, return an error result
 ​___________________; // ​cleanup
 ​perror("Write failed");
 return -1;

 }

 continue; ​// EINTR happened, so loop around and try again
 }

 ________________________________; ​// update loop variable
}

________________; // ​cleanup

4) Why is it important to store the return value from the ​write() ​ function? Why do we not

check for a return value of 0 like we do for ​read() ​?

5) Why is it important to remember to call the ​close() ​ function once you have finished

working on a file?

POSIX and Errors
Unfortunately, errors that occur when using POSIX system calls are not handled
for the user as they are with C standard library functions. So it is important thing
is to make sure your code handles errors gracefully.
Note that:

● When an error occurs, the error number is stored in ​errno​, which is
defined under ​<errno.h>​.

● You can use ​perror()​ to print out a message based on ​errno​.
● Remember that ​errno​ is shared by all library functions and overwritten

frequently, so you must read it ​right​ after an error to be sure of getting the
right code.

POSIX functions have a variety of error codes to represent different errors. Some
common error conditions:
◆ EBADF –​ ​fd​ is not a valid file descriptor or is not open for reading.
◆ EFAULT –​ ​buf​ is outside your accessible address space.
◆ EINTR –​ The call was interrupted by a signal before any data was read.

This error, unlike others, is recoverable.
◆ EISDIR –​ ​fd​ refers to a directory.

Exercise:
6) Given the name of a file as a command-line argument, write a C program that is analogous

to ​cat​, ​i.e.​ one that prints the contents of the file to ​stdout ​. Handle any errors!
Example usage: “​./filedump <path> ​” where ​<path> ​ can be absolute or relative.

int main(int argc, char** argv) {

 /* 1. Check to make sure we have valid command line arguments */

 /* 2. Open the file, use O_RDONLY flag */

 /* 3. Read from the file and write it to standard out. Try doing

 this without using printf() and instead have write() pipe to

 Stdout (take a look at STDOUT_FILENO). It might be helpful

 to initialize a buffer variable (of size 1024 bytes should

be

 fine) to pass in to read() andwrite(). */

 /*4. Clean up */

}

POSIX and directories
POSIX calls can also be used to access directories. This is because in Linux, directories
are nothing more than special files. An example workflow might be: open a directory,
iterate through directory contents, close the directory.

DIR *opendir(const char* name);

➔ name​ ​is the directory to open. Accepts relative and absolute paths.
Can end with ‘/’, but is not necessary.

★ Returns a pointer ​DIR*​ to the directory stream or ​NULL​ on error (with ​errno
set).

int closedir(DIR *dirp);
➔ dirp​ ​is the directory stream to close.
★ Returns ​0​ on success or ​-1​ on error (with ​errno​ set).

struct dirent *readdir(DIR *dirp);

➔ dirp​ ​is the directory stream to process.
★ Returns a pointer to a dirent structure representing the next directory entry in the

directory stream or returns ​NULL​ on error or reaching the end of the directory
stream.

On Linux, the dirent structure is defined as follows:

struct dirent {

 ino_t d_ino; ​/* inode number for the dir entry */
 off_t d_off; ​/* not necessarily an offset */
 unsigned short d_reclen; ​/* length of this record */
 unsigned char d_type; ​/* type of file (not what you think);

not supported by all file system

types */

 char d_name[NAME_MAX+1]; ​/* directory entry name*/
};

Exercise:
7) Given the name of a directory, write a C program that is analogous to ​ls​, ​i.e.​ prints the

names of the entries of the directory to ​stdout ​. Be sure to handle any errors!
Example usage: “​./dirdump <path> ​” where ​<path> ​ can be absolute or relative.

int main(int argc, char** argv) {

 /* 1. Check to make sure we have a valid command line arguments */

 /* 2. Open the directory, look at opendir() */

 /* 3. Read through/parse the directory and print out file names

 Look at readdir() and struct dirent */

 /* 4. Clean up */

}

