
CSE 333 Section 3 - POSIX I/O Functions
Welcome back to section! We’re glad that you’re here :)

POSIX
Posix is a family of standards specified by the IEEE. These standards maintain compatibility
across variants of Unix-like operating systems by defining APIs and standards for basic I/O (file,
terminal, and network) and for threading.

1) What does POSIX stand for?

2) Why might a POSIX standard be beneficial? From an application perspective? Versus using

the C stdio library?

POSIX and Files
File I/O using POSIX is similar to file I/O using the C stdio library. Some of the operations that
can be performed on files using Posix systems calls are: opening a file, reading from a file,
writing to a file, closing a file.

int open(char* name, int flags, mode_t mode);
➔ name is a string representing the name of the file. Can be relative or absolute.
➔ flags is an integer code describing the access. Some common flags are listed

below:
◆ O_RDONLY – Open the file in read-only mode.
◆ O_WRONLY – Open the file in write-only mode.
◆ O_RDWR – Open the file in read-write mode.
◆ O_APPEND – Append new information to the end of the file.

★ Returns an integer which is the file descriptor. Returns -1 if there is a failure.

int close(int fd);
➔ fd is the file descriptor (as returned by open()).
★ Returns 0 on success, -1 on failure.

ssize_t read(int fd, void *buf, size_t count);

ssize_t write(int fd, const void *buf, size_t count);
➔ fd is the file descriptor (as returned by open()).
➔ buf is the address of a memory area into which the data is read or written.
➔ count is the maximum amount of data to read from or write to the stream.
★ Returns the actual amount of data read from or written to the file.

Exercises:
3) A common use of the POSIX I/O function is to write to a file; fill in the code skeleton below

that writes all of the contents of a string buf to the file 333.txt . You must use a different
method than the “bytes_left” method shown in lecture.

int fd = __; // open 333.txt
int n =;

char *buf = ; // Assume buf initialized with size n
int result;

______________________________; // initialize variable for loop

... // code that populates buf happens here

while (_______________________) {

 result = write(_______,_______________,_______________________);

 if (result == -1) {

 if (errno != EINTR) {

 // a real error happened, return an error result
 ___________________; // cleanup
 perror("Write failed");
 return -1;

 }

 continue; // EINTR happened, so loop around and try again
 }

 ________________________________; // update loop variable
}

________________; // cleanup

4) Why is it important to store the return value from the write() function? Why do we not

check for a return value of 0 like we do for read() ?

5) Why is it important to remember to call the close() function once you have finished

working on a file?

POSIX and Errors
Unfortunately, errors that occur when using POSIX system calls are not handled
for the user as they are with C standard library functions. So it is important thing
is to make sure your code handles errors gracefully.
Note that:

● When an error occurs, the error number is stored in errno, which is
defined under <errno.h>.

● You can use perror() to print out a message based on errno.
● Remember that errno is shared by all library functions and overwritten

frequently, so you must read it right after an error to be sure of getting the
right code.

POSIX functions have a variety of error codes to represent different errors. Some
common error conditions:
◆ EBADF – fd is not a valid file descriptor or is not open for reading.
◆ EFAULT – buf is outside your accessible address space.
◆ EINTR – The call was interrupted by a signal before any data was read.

This error, unlike others, is recoverable.
◆ EISDIR – fd refers to a directory.

Exercise:
6) Given the name of a file as a command-line argument, write a C program that is analogous

to cat, i.e. one that prints the contents of the file to stdout . Handle any errors!
Example usage: “./filedump <path> ” where <path> can be absolute or relative.

int main(int argc, char** argv) {

 /* 1. Check to make sure we have valid command line arguments */

 /* 2. Open the file, use O_RDONLY flag */

 /* 3. Read from the file and write it to standard out. Try doing

 this without using printf() and instead have write() pipe to

 Stdout (take a look at STDOUT_FILENO). It might be helpful

 to initialize a buffer variable (of size 1024 bytes should

be

 fine) to pass in to read() andwrite(). */

 /*4. Clean up */

}

POSIX and directories
POSIX calls can also be used to access directories. This is because in Linux, directories
are nothing more than special files. An example workflow might be: open a directory,
iterate through directory contents, close the directory.

DIR *opendir(const char* name);

➔ name is the directory to open. Accepts relative and absolute paths.
Can end with ‘/’, but is not necessary.

★ Returns a pointer DIR* to the directory stream or NULL on error (with errno
set).

int closedir(DIR *dirp);
➔ dirp is the directory stream to close.
★ Returns 0 on success or -1 on error (with errno set).

struct dirent *readdir(DIR *dirp);

➔ dirp is the directory stream to process.
★ Returns a pointer to a dirent structure representing the next directory entry in the

directory stream or returns NULL on error or reaching the end of the directory
stream.

On Linux, the dirent structure is defined as follows:

struct dirent {

 ino_t d_ino; /* inode number for the dir entry */
 off_t d_off; /* not necessarily an offset */
 unsigned short d_reclen; /* length of this record */
 unsigned char d_type; /* type of file (not what you think);

not supported by all file system

types */

 char d_name[NAME_MAX+1]; /* directory entry name*/
};

Exercise:
7) Given the name of a directory, write a C program that is analogous to ls, i.e. prints the

names of the entries of the directory to stdout . Be sure to handle any errors!
Example usage: “./dirdump <path> ” where <path> can be absolute or relative.

int main(int argc, char** argv) {

 /* 1. Check to make sure we have a valid command line arguments */

 /* 2. Open the directory, look at opendir() */

 /* 3. Read through/parse the directory and print out file names

 Look at readdir() and struct dirent */

 /* 4. Clean up */

}

