
CSE 333 Section

1



Logistics

Due Monday:
Exercise 4 @ 10 am

Due January 28 (next Thursday):
Homework 1 @ 11 pm

2



POSIX
Posix is a superset of the standard C library. Posix is a family of standards specified by the IEEE. These 
standards maintains compatibility across variants of Unix-like operating systems by defining APIs and 
standards for basic I/O (file, terminal, and network) and for threading.

1. What does POSIX stand for?

2. Why might a POSIX standard be beneficial? From an application perspective? Versus using the C 
stdio library?

Portable Operating System Interface
`

● More explicit control since read and write functions are system calls 
and you can directly access system resources.

● POSIX calls are unbuffered so you can implement your own buffer 
strategy on top of read()/write().

● There is no standard higher level API for network and other I/O 
devices

3



System I/O Calls

Returns an integer which is the file descriptor.
Returns -1 if there is a failure. 

filename: A string representing the name of the file.
flags: An integer code describing the access.

O_RDONLY -- opens file for read only 
O_WRONLY – opens file for write only 
O_RDWR – opens file for reading and writing 
O_APPEND --- opens the file for appending
O_CREAT -- creates the file if it does not exist
O_TRUNC -- overwrite the file if it exists

mode: File protection mode. Ignored if O_CREAT is not specified.
[man 2 open]



System I/O Calls

fd: file descriptor.
buf: address of a memory area into which the data is read. 
count: the maximum amount of data to read from the stream.
The return value is the actual amount of data read from the file.

Returns 0 on success, -1 on failure. 

[man 2 read]
[man 2 write]
[man 2 close]



Errors

● When an error occurs, the error number is stored in errno, which is 
defined under <errno.h>

● View/Print details of the error using perror() and errno.
● POSIX functions have a variety of error codes to represent different 

errors. Some common error conditions:
○ EBADF - fd is not a valid file descriptor or is not open for reading.
○ EFAULT - buf is outside your accessible address space.
○ EINTR - The call was interrupted by a signal before any data was read.
○ EISDIR - fd refers to a directory.

● errno is shared by all library functions and overwritten frequently, so you 
must read it right after an error to be sure of getting the right code

[man 3 errno]
[man 3 perror]



Error codes returned from read

ssize_t read(int fd, void *buf, size_t count)

An error occurred result = -1
errno = error

Already at EOF result = 0

Partial Read result < count

Success! result == count

7



8



9



10



11



12



13



Breakout Rooms (Q3)

14



15

int fd = __________________________________________;  // open 333.txt
int n = ....;
char *buf = ....... ; // Assume buf initialized with size n
int result;

______________________________;   // initialize variable for loop

...   // code that populates buf happens here

while (_______________________) {

    result = write( _______,_______________,_______________________);

    if (result == -1) {
        if (errno != EINTR) {
            // a real error happened, return an error result
            ___________________;  // cleanup
            perror("Write failed");
            return -1;
        }
        continue;  // EINTR happened, so loop around and try again
    }
   ________________________________;  // update loop variable
}
________________; // cleanup



16

int fd = __________________________________________;  // open 333.txt
int n = ....;
char *buf = ....... ; // Assume buf initialized with size n
int result;

______________________________;   // initialize variable for loop

...   // code that populates buf happens here

while (_______________________) {

    result = write( _______,_______________,_______________________);

    if (result == -1) {
        if (errno != EINTR) {
            // a real error happened, return an error result
            ___________________;  // cleanup
            perror("Write failed");
            return -1;
        }
        continue;  // EINTR happened, so loop around and try again
    }
   ________________________________;  // update loop variable
}
________________; // cleanup

open("333.txt", O_WRONLY)

char *ptr = buf

ptr < buf + n

fd        ptr               buf + n - ptr

close(fd)

ptr += result

close(fd)

**This is one way to solve 
this exercise. There exist 
other correct solutions



More Posix!

17

4) Why is it important to store the return value from the write() function?  Why do we not check for 
a return value of 0 like we do for read()?

5) Why is it important to remember to call the close() function once you have finished working on 
a file?



More Posix!

18

4) Why is it important to store the return value from the write() function?  Why do we not check for 
a return value of 0 like we do for read()?

5) Why is it important to remember to call the close() function once you have finished working on 
a file?

write() may not actually write all the bytes specified in count.
         Writing adds length to your file, so you don’t need to check for end of file.

In order to free resources i.e. other processes can acquire locks on those files.



DIRECTORIES

19



DIR* in POSIX?

DIR *opendir(const char* name);

int closedir(DIR *dirp);

struct dirent *readdir(DIR *dirp);

20



readdir() example

21

~/tiny_dir/

DIR* dirp = opendir("~/tiny_dir");
struct dirent *file = readdir(dirp);
file = readdir(dirp);
file = readdir(dirp);
closedir(dirp);

// opens directory
// gets pointer to "Hello.txt" dirent

// gets pointer to "goodbye.c" dirent
// gets NULL

// cleanup



struct dirent *readdir(DIR *dirp);

Struct dirent

** You do not need to “free” or “close” dirent structs from readdir() **
22

// Probably the thing
// we care about most



23

Exercise:
7) Given the name of a directory, write a C program that is analogous to ls, i.e. prints the names of

the entries of the directory to stdout. Be sure to handle any errors!
Example usage: “./dirdump <path>” where <path> can be absolute or relative.



24

int main(int argc, char** argv) {
  /* 1. Check to make sure we have a valid command line arguments 
*/

  /* 2. Open the directory, look at opendir() */

  /* 3. Read through/parse the directory and print out file names
        Look at readdir() and struct dirent */

  /* 4. Clean up */

}

  if (argc != 2) {
    fprintf(stderr, "Usage: ./dirdump <path>\n");
    return EXIT_FAILURE;
  }

  DIR* dirp = opendir(argv[1]);
  if (dirp == NULL) {
    fprintf(stderr, "Could not open directory\n");
    return EXIT_FAILURE;
  }

  struct dirent *entry;
  entry = readdir(dirp);
  while (entry != NULL) {
    printf("%s\n", entry->d_name);
    entry = readdir(dirp);
  }

  closedir(dirp);
  return EXIT_SUCCESS;



New Scenario - Messy Roommate

● The Linux kernel now lives with you in room #333

● There are N pieces of trash in the room

● There is a single trash can,  char bin[N]
○ (For some reason, the trash goes in a particular order)

● You can tell your roommate to pick it up, but he/she is unreliable

25

NOTE: We aren’t covering this in section, but it’s a good analogy if you’re struggling with 
reading in POSIX



New Scenario - Messy Roommate

NumTrash pickup(roomNum, trashBin, Amount)

“I tried to start cleaning, but something came up”
(got hungry, had a midterm, room was locked, etc.)

NumTrash == -1
errno == excuse

“You told me to pick up trash, but the room was 
already clean”

NumTrash == 0

“I picked up some of it, but then I got distracted by 
my favorite show on Netflix”

NumTrash < Amount

“I did it! I picked up all the trash!” NumTrash == Amount

26



How do we get room 333 
clean?

NumTrash pickup(roomNum, trashBin, Amount)

NumTrash == -1, errno == excuse

NumTrash == 0

NumTrash < Amount

NumTrash == Amount

bin[0]

bin[N-1]
What do we 
do in the 
following 
scenarios?

27



How do we get room 333 
clean?

NumTrash pickup(roomNum, trashBin, Amount)

NumTrash == -1, errno == excuse

NumTrash == 0

NumTrash < Amount

NumTrash == Amount

bin[0]

bin[N-1]I have to study 
for cse333! I’ll 
do it later.

Decide if the 
excuse is 
reasonable, 
and either 
let it be or 
ask again.

28



How do we get room 333 
clean?

NumTrash pickup(roomNum, trashBin, Amount)

NumTrash == -1, errno == excuse

NumTrash == 0

NumTrash < Amount

NumTrash == Amount

bin[0]

bin[N-1]The room is 
already clean, 
dawg!

Stop asking 
them to clean 
the room! 
There’s 
nothing to do.

29



How do we get room 333 
clean?

NumTrash pickup(roomNum, trashBin, Amount)

NumTrash == -1, errno == excuse

NumTrash == 0

NumTrash < Amount

NumTrash == Amount

bin[0]

bin[N-1]
Ask them 
again to pick 
up the rest 
of it.

I picked up 3 
whole pieces of 
trash! What more 
do you want from 
me?

30



How do we get room 333 
clean?

NumTrash pickup(roomNum, trashBin, Amount)

NumTrash == -1, errno == excuse

NumTrash == 0

NumTrash < Amount

NumTrash == Amount

bin[0]

bin[N-1]
They did 
what you 
asked, so 
stop asking 
them to pick 
up trash.

I did it! The 
whole room 
is finally 
clean.

31



How do we get room 333 
clean?

int pickedUp = 0;
while ( ____________ ) {
    

}

NumTrash pickup(roomNum, trashBin, Amount)

NumTrash == -1, errno == excuse

NumTrash == 0

NumTrash < Amount

NumTrash == Amount

32



How do we get room 333 
clean?

int pickedUp = 0;
while ( pickedUp < N ) {
    
    if ( NumTrash == -1 ) {
        if ( bad excuse )
            ask again
        stop asking
    }
    if ( NumTrash == 0 )
        stop asking
    
}

NumTrash pickup(roomNum, trashBin, Amount)

NumTrash == -1, errno == excuse

NumTrash == 0

NumTrash < Amount

NumTrash == Amount

if ( NumTrash == -1 ) {
    if ( bad excuse )
        ask again
    
}
if ( NumTrash == 0 )  // we over-estimated the trash

stop asking since the room is clean
add NumTrash to pickedUp

if ( excuse not reasonable )
    ask again
stop asking and handle the excuse

NumTrash = pickup( 333, bin + pickedUp, N - pickedUp )

33



How do we get room 333 
clean?

int pickedUp = 0;
while ( pickedUp < N ) {
    
    if ( NumTrash == -1 ) {
        if ( bad excuse )
            ask again
        stop asking
    }
    if ( NumTrash == 0 )
        stop asking
    
}

NumTrash pickup(roomNum, trashBin, Amount)

NumTrash == -1, errno == excuse

NumTrash == 0

NumTrash < Amount

NumTrash == Amount

if ( result == -1 ) {
    if ( bad excuse )
        ask again
    
}
if ( result == 0 )

break;
pickedUp += result;

if ( errno == E_BUSY_NETFLIX )
    continue;
break;

result = pickup( 333, bin + pickedUp, N - pickedUp )

34



Some Final Notes...
We assumed that there were exactly N pieces of trash (N bytes of data that we 
wanted to read from a file). How can we modify our solution if we don’t know N?

      (Answer): Keep trying to read(...) until we get 0 back (EOF / clean room)

We determine N dynamically by tracking the number of bytes read until this point, 
and use malloc to allocate more space as we read.

(This case comes up when reading/writing to the network!)

There is no one true loop (or true analogy).
Tailor your POSIX loops to the specifics of what you need!

35


