
 

CSE 333 – Section 2: Structs, Debugging, Memory Management, and Valgrind 
Plenty of resources focused on GDB can be found at the CSE351 GDB page and the CSE333 Resource Page: 

https://courses.cs.washington.edu/courses/cse351/20sp/gdb/ and 
https://courses.cs.washington.edu/courses/cse333/21wi/resources/resources.html  

 

In this class, it is very helpful to be comfortable with gdb as a tool to debug C/C++ code. Note that gdb allows 

you to see the source code while you run it, and that it has many useful commands to analyze your program. 

 
For GDB to work with your C program, compile it using the “-g” flag 
 

Starting GDB  

To start up gdb, run the following command. Note that the -tui flag is optional. It is used to enable a text UI. 

bash$ gdb -tui <program file name> 
 

Here is a list of some essential gdb commands, if you want to know more, ask a TA or investigate the resources 

at the top of the page. 

 

[IN GDB] Controlling Program Execution 

● run <command_line_args> Run the program with provided command_line_args 

● next Go to next instruction, but don't dive into functions 

● step Go to next instruction, and dive into functions 

● finish Continue until  current function returns 

● quit close gdb 

 

[IN GDB] Examining the Current Program 

● list Shows the current or given source context 

● backtrace Shows the call stack 

● up Moves up a stack frame 

● down Moves down a stack frame 

● print <expression> Prints content of variable/memory location/register 

 

[IN GDB] Setting Breakpoints and Continuing 

● break <where> Set a new breakpoint 

● info breakpoints Prints information about the set breakpoints 

● continue Continue normal execution 
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1. Debugging with gdb 

Provided below is a segment of reverse.c. The program intends to take a string, and then reverse the 

ordering of the characters in the string. For example, if "Hello" is provided, then "olleH" should be 

returned.  

 

gcc -Wall -std=c11 -g -o reverse reverse.c 

 

Identify and fix the errors that are in reverse.c. Use gdb to analyze the program for errors. 

 
#define MAX_STR 100   /* length of longest input string */ 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

 

/* Return a new string with the contents of s backwards */ 

char * reverse(char * s) { 

  char * result = NULL;            /* the reversed string */ 

  int L, R; 

  char ch; 

 

  /* copy original string then reverse and return the copy */ 

  strcpy(result, s); 

 

  L = 0; 

  R = strlen(result); 

  while (L < R) { 

    ch = result[L]; 

    result[L] = result[R]; 

    result[R] = ch; 

    L++; R--; 

  } 

 

  return result; 

} 
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2. Leaky Code and Valgrind 

 
#include <stdio.h> 
#include <stdlib.h> 
  

/* Returns an array containing [n, n+1, ... , m-1, m]. If n>m, then the 

   array returned is []. If an error occurs, NULL is returned. */ 

 int* rangeArray( int n, int m) { 
  int length = m - n + 1; 
  

  /* Heap allocate the array needed to return */ 
  int *array = ( int*) malloc ( sizeof( int) * length); 
  

  /* Initialize the elements */ 
  for ( int i = 0; i <= length; i++) { 

array[i] = i + n; 

  } 

 

  return array; 
} 

  

/* Accepts two integers as arguments */ 

int main( int argc, char *argv[]) { 
  if (argc != 3) return EXIT_FAILURE ; 
 

  int n = atoi (argv[1]), m = atoi (argv[2]);  /* Parse cmd-line args */ 
  int *nums = rangeArray (n, m); 
  

  /* Print the resulting array */ 
  for ( int i = 0; i <= (m - n + 1); i++) { 
    printf ( "%d" , nums[i]); 
  } 

 

  /* Append newline char to our output */ 
  puts (""); 
 

  return EXIT_SUCCESS ; 
}  

3 



 

To define a struct, we use the struct statement. A struct typically has a name (a tag), and one or more 

members. The struct statement defines a new type: 

 
struct fruit_st { 
  OrchardPtr origin; 

  int volume; 
}; 

 

The C Programming language provides the keyword typedef, which defines an alternate name for a type: 

 
typedef struct fruit_st { 
  OrchardPtr origin; 

  int volume; 
} Fruit; 

 

The above defines the name Fruit to represent the type struct fruit_st. 
 

Now let’s define the Orchard type used in Fruit: 

 
typedef struct orchard_st { 
  char name[20] ; 

} Orchard, *OrchardPtr; 

 

 

The above defines the name Orchard to represent the type struct orchard_st as well as the name 

OrchardPtr to represent a struct Orchard* (a pointer to a struct orchard_st) 
 

Assume we’ve initialized a Fruit and corresponding Orchard with ‘random’ values. 

Then we can draw a memory diagram for the above structs like so: 

 

A struct is passed and returned by value. That means that if we pass a struct as an argument, the callee 

function gets a local copy of the entire struct. We will explore this in more detail in question 1. 
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3. Structs and Pointers 
 

What does the following program output? 

Use the definitions of Fruit and Orchard from the first page of the section handout. 

 
#include <string.h> 
#include <stdio.h> 
#include <stdlib.h> 
 

int eatFruit(Fruit fruit) { 
  fruit.volume -= 10; 
  strcpy(fruit.origin->name, "Eaten Fruit Orchard"); 
  return fruit.volume; 
} 

 

void growFruit(Fruit* fruitPtr) { 
  fruitPtr->volume += 7; 
} 

 

void exchangeFruit(Fruit** fruitPtrPtr) { 
  Fruit *banana = (Fruit*)malloc(sizeof(Fruit)); 
  banana->volume = 12; 
  banana->origin = (OrchardPtr)malloc(sizeof(Orchard)); 
  strcpy(banana->origin->name, "Banana Orchard"); 
  *fruitPtrPtr = banana; 

} 

 

int main(int argc, char* argv[]) { 
  Orchard bt; 

  strcpy(bt.name, "Apple Orchard"); 
 

  Fruit apple; 

  Fruit* applePtr = &apple; 

  apple.origin = &bt; 
  apple.volume = 33; 
  applePtr->volume = apple.volume; 
 

  printf("1. %d, %s \n", applePtr->volume, applePtr->origin->name); 
  apple.volume = eatFruit(apple); 
  printf("2. %d, %s \n", applePtr->volume, applePtr->origin->name); 
  growFruit(applePtr); 
  printf("3. %d, %s \n", applePtr->volume, applePtr->origin->name); 
  exchangeFruit(&applePtr); 
  printf("4. %d, %s \n", applePtr->volume, applePtr->origin->name); 
  

  free(applePtr->origin); 
  free(applePtr); 
 

  return 0; 
} 
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(a) Draw a memory diagram for the program. We’ve put some boxes for the variables in main() to help 

get you started. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) What does this program output? 
 

1.  ________________, ________________ 

 

2.  ________________, ________________ 

  

3.  ________________, ________________ 

  

4.  ________________, ________________ 

4. Reverse a Linked List  [Extra Practice] 
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A node in a linked list is defined as follows: 

 
struct Node { 
  int value; 
  struct Node* next; 
}; 

 

Complete the function reverse  to reverse the linked list and return the head of the resulting list.  

 

Do not create new list nodes and do not modify the contents of a list node. 

Assume next == NULL implies the end of the list. 

 
struct Node* reverse ( struct Node* head) { 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

} 

 

5. Sorted Array To Binary Search Tree  [Extra Practice] 

 

A node in a tree is defined as follows: 
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struct TreeNode { 
  int value; 
  struct TreeNode* left; 
  struct TreeNode* right; 
}; 

 

Complete the implementation of the sortedArrayToBST function to convert a sorted integer array into a 

balanced binary search tree. The client to this method will invoke it as follows: 

 
struct TreeNode* root = sortedArrayToBST (sortedArray, 0, n - 1); 

 

where sortedArray  is a sorted array of integers and n is the length of sortedArray. 
 
struct TreeNode* sortedArrayToBST ( int[] arr, int low, int high) { 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

} 
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