CSE 333 — SECTION 2

gdb, valgrind, pointers & structs

Questions, Comments, Concerns

*Do you have any?

*Exercises going ok?

*Lectures make sense?
*Homework 1 — START EARLY!

Upcoming Due Dates:

* Due Jan 20th, EX3 due @ 10 am
* Due Jan 28th, HW1 due @ 11 pm

L
Structs (Recap from 351)

e Astructis a C data type that contains a set of fields
o Useful for defining new structured types of data.
o Act similarly to primitive variables.

e Generic Declaration: Example:
/struct tagname { A /struct Point { A
type1 namef; int X;
inty;
typeN nameN; b
} \ J
k / *defines a new data type called “struct Point”

e Declaring and initializing a struct:

/l Remember to use “struct Point” to refer to the struct.
/ Initializes a struct Point variable called origin with x =0.0 &y =0
struct Point origin = {0.0, 0};

L
Using Structs

o Use “.” to refer to a field in a struct

e Use “->" to refer to a field from a struct pointer
o Dereferences the pointer, then accesses the field.

gruct Point { \

int Xx;
inty;
%

struct Point p1 = {5, 10};
struct Point *p2 = &p1; // Notice that this is a pointer to p1

p1.x =15; // p1 now = {15, 10}
2->y =0; // since p2 points to p1, p1 now = {15,0}

& /

L
Typedef

o Allows you to define an alternate name for existing data types.
o Generic format: Examples:

[typedef type name; 1 [typedef int int_alias; }

typedef struct Point point;
point origin = {0, 0}

» Joint struct definition and typedef:

ftypedef struct { \
int x;
inty;
} point;
/[Just refer to it as “point”

point origin = {0, 0};
K ' igin = {0, 0} /

Exercise 3: Memory diagrams

Fruits & Orchards

typedef struct fruit_st {
OrchardPtr origin;
int volume;

} Fruit;

typedef struct orchard st {
char name[20] ;
} Orchard, ¥*CrchardPtr;

Fruit
origin

volume

Orchard

Name

main

int main (int argc, char* argv([]) { bt
Orchard bt;

name | "Apple Orchard\0"

strcpy (bt.name, "Apple Orchard");
origin — |

: . apple T+
Fru}t apple; volume 33
Fruit* applePtr = &apple;
apple.origin = &bt;
apple.volume = 33; applePtr N
applePtr->volume = apple.volume;

console output

printf ("1. %d, %s \n",
applePtr->volume, 1, 33, Apple Orchard
applePtr->origin->name) ;

apple.volume = eatirult (apple);
printf ("2, %d, %s \n'", applePtr->volume,
applePtr->origin->name) ;

main eatFruit
S T
bt|name | "Eaten Fruit Orchard\@" origin T
fruit
volume 23
origin — |
apple [
volume 23 T
applePtr
Pp .

console output

int eatifruit (Fruit fruit) {
fruit.volume -= 10;
strcpy (fruit.origin—->name,
"Eaten Fruit Orchard");
return fruit.volume;

1, 33, Apple Orchard
2, 23, Eaten Fruit Orchard

growbtrulit (applePtr);
printf ("3, %d, %s \n", applePtr->volume,
applePtr->origin->name) ;

main

bt|name | "Eaten Fruit Orchard\9"

origin -~
apple -
PP volume 30 growFruit
fruitPtr
applePtr
PP .

console output

void growFruit (Fruit* fruitPtr) { 1, 33, Apple Orchard
fruitPtr->volume += 7; 2, 23, Eaten Fruit Orchard
3, 30, Eaten Fruit Orchard

10

void exchangeFruit (Fruit** fruitPtrPtr)

Fruit *banana =
(Fruit*) malloc (sizeof (Fruit)):;

banana->volume = 12;

main
banana->origin =
bt | name Eaten Fruit Orchard\© (OrchardPtr) malloc (sizeof (Orchard))
strcpy (banana->origin->name,
o "Banana Orchard"):;
origin] *fruitPtrPtr = banana;
apple \\\\\\\JTDﬂﬂni Fruit
volume 30 o ngerrui
’/ﬂ””///’/////// fruitPtrPtr | —
applePtr banana =
AN
console output

Heap Allocated Memery

origin 1, 33, Apple Orchard

volume / - 2, 23, Eaten Fruit Orchard
3, 30, Eaten Fruit Orchard
4,1

2, Banana Orchard

name | "Banana Orchard”

exchangelrult (&applePtr) ;
printf ("4, %d, %s \n", applePtr->volume,

applePtr->origin->name) ;

{

11

main eatFruit
<[D
bt name | "Eaten Fruit Orchard\9" origin -
apple
o volume 23

origin —
apple \\\\.‘\\exeha Frui i

volume 30 //_______Egg_ﬁglt growFruit
appleptr banana L~

Heap Allocated Memory console output

origin

1, 33, Apple Orchard
volume / 12 2, 23, Eaten Fruit Orchard

3,3

4, 1

0, Eaten Fruit Orchard
2, Banana Orchard

name | "Banana Orchard" ’

12

Motivation & Tools

*The projects are big, lots of potential for bugs
*Debugging is a skill that you will need throughout your career

*gdb (GNU Debugger) is a debugging tool
*Handles more than just assembly.
*Lots of helpful features to help with debugging
*Very useful in tracking undefined behavior

*Valgrind is a memory debugging tool
*Checks for various memory errors

*If you are running into odd behavior, running valgrind may point out the
cause.

13

Exercise 1: Debugging with gdb

14

Segmentation fault

-Causes of segmentation fault
Dereferencing uninitialized pointer
*Null pointer
* A previously freed pointer
*Accessing end of an array

-gdb (GNU Debugger) is very helpful for identifying the
source of a segmentation fault

*Backtrace

15

Other Esssential gdb Commands

‘run <command_line_args>
‘backtrace
‘frame, up, down
*print <expression>
~quit
‘breakpoints
*(see next slide)

16

L
gdb Breakpoints

-Usage:
‘break <function_name>
‘break <filename:line#>

*Example: break CSE333.c:20
/I ™ sets breakpoint for when Verify333 fails

*Can advance with:
scontinue — resume execution
‘next — execute next line of code, treat functions as one statement
-step — execute next line of code, stepping into called functions
*finish — run until current function returns

*More info linked from the course website!

17

reverse.C

18

Man pages
°If you are unsure of what a C library function does, use

man to find more information.
‘Example: man strcpy

*Note: man also supports various unix commands, but
doesn’t hold info for C++

19

Memory Errors

*Use of uninitialized memory

*Reading/writing memory after it has been freed — Dangling pointers
*Reading/writing to the end of malloc'd blocks

*Reading/writing to inappropriate areas on the stack
*Memory leaks where pointers to malloc'd blocks are lost

Valgrind is your friend!!

20

Exercise 2. Leaky code and
Valgrind Demo

Leaky.c: Prints an array with a given range of values
Given: 2 integers, m & n.

Output: [n, n+1, n+2, , m-1, m]

Example:

n=2

m=395

Output = [2, 3, 4, 5]

<Demo>

21

Section exercise

*Handouts.

*Work with a partner, if you wish.

*Look at the expandable vector code in imsobuggy.c.

*First, try to find all the bugs by inspection.

*Then try to use Valgrind on the same code.

Code is located at
https://courses.cs.washington.edu/courses/cse333/21wi/sections/sec02-code/

22

https://courses.cs.washington.edu/courses/cse333/21wi/sections/sec02-code/

