
CSE 333 Section 1

C, Pointers, and Gitlab

1



Logistics
Due Friday:

Exercise 0 @ 10:00 am

Due Monday:

Exercise 1 @ 10:00 am
HW0 (setup Gitlab ASAP) @11 pm

2



Icebreaker!

3



attu/CSE VM Setup and Gitlab 
Demo

4



Attu/CSE VM Updates and gcc 9
• Attu and the CSE VMs got an update to CentOS 8!

• Vanilla GNOME instead of xfce!
• You can use the super/windows key to open stuff!

• We’re using gcc 9 this quarter, but need to do a bit to configure it
• Log on to attu or CSE VM (whichever one you’re using)
• Run this command: touch ~/.gcc9
• Log off and log back in
• Run gcc –v and verify that it shows gcc version 9



Attu/CSE VM Updates and gcc9
• Why?

• The bash login scripts look for the .gcc9 file and adjust gcc8 to gcc9 if found

• What if I don’t do this? 
• Your hw1 will crash spectacularly
• We’ve found some fun bugs where the exercise autograder will generate a 

warning that you won’t see and you will be marked down L



Accessing Gitlab
• Sign In using your CSE NetID @

https://gitlab.cs.washington.edu/
• You should have a repo created 

for you titled: cse333-20au-<netid>



SSH Key Generation

8

Step 1a: Check if you have a key
• Run cat ~/.ssh/id_rsa.pub
• If you see a long string starting with ssh-rsa or ssh-dsa go to Step 2

Step 1b: Generate a new SSH key if necessary
• Run ssh-keygen -t rsa -C "<netid>@cs.washington.edu" to generate a 

new key
• Click enter to skip creating a password

• git docs suggest creating a password, but it’s overkill for 333 and complicates 
operations



SSH Key Generation

9

Step 2: Copy SSH key
• run cat ~/.ssh/id_rsa.pub
• Copy the complete key key starting with ssh- and ending with your username 

and host

Step 3: Add SSH key to gitlab
• Navigate to your ssh-keys page (click on your avatar in the upper-right, then 

“Settings,” then “SSH Keys” in the left-side menu)
• Paste into the “Key” text box and give a “Title” to identify what machine the 

key is for
• Click the green “Add key” button below “Title”



10

First Commit
1) git clone <repo url from project page>

• Clones your repo

2) touch README.md
• Creates an empty file called README.md

3) git status
• Prints out the status of the repo:  you should see 1 new file README.md

4) git add README.md
• Stages a new file/updated file for commit.  git status: README.md staged for commit

5) git commit -m "First Commit"
• Commits all staged files with the provided comment/message.  

git status: Your branch is ahead by 1 commit.

6) git push
• Publishes the changes to the central repo.  You should now see these changes in the web interface (may need to 

refresh).
• Might need git push -u origin master on first commit (only), but would be unusual for this to happen



Git Repo Usage

11

Try to use the command line interface (not Gitlab’s web interface)

Only push files used to build your code to the repo
• No executables, object files, etc.
• Don’t always use <git add .> to add all your local files

Commit and push when an individual chunk of work is tested and done
• Don’t push after every edit
• Don’t only push once when everything is done



Git References

12

• SSH Key generation: 
https://gitlab.cs.washington.edu/help/ssh/README.md

• Basic Git Tutorial: 
https://courses.cs.washington.edu/courses/cse333/20au/resources/git_tutorial.html

• Steps of what we just demo'd:
https://courses.cs.washington.edu/courses/cse333/20au/hw/git_setup.html

https://gitlab.cs.washington.edu/help/ssh/README.md
https://courses.cs.washington.edu/courses/cse333/20au/resources/git_tutorial.html
https://courses.cs.washington.edu/courses/cse333/20au/hw/git_setup.html


Pointer Review

13



Pointers
Pointers are just another 
primitive data type.

An integer can hold an index 
into an array.

If memory is a giant array of 
bytes, then a pointer just holds 
an index into that array.

14

type *name;

int32_t *ptr;

0x7ff….ptr

ptr



Pointer Syntax

“Address of”

“Value at”

&

*

15

int32_t x;
int32_t *ptr;

ptr

x

ptr = &x;
x = 5;

5

*ptr = 10;

10



Exercise 1

16



17

5

22

42

x

y

z

X (foo)

y (foo)

z (foo)

42

37

Draw a memory diagram like the one above for the following code 
and determine what the output will be.

void foo(int32_t *x, int32_t *y, int32_t *z) {
x = y;
*x = *z;
*z = 37;

}

int main(int argc, char *argv[]) {
int32_t x = 5, y = 22, z = 42;
foo(&x, &y, &z);
printf("%d, %d, %d\n", x, y, z);
return EXIT_SUCCESS;

}



C-Strings

18



C-Strings

- A string in C is declared as an array of characters that is terminated by 
a null character ‘\0’.

- When allocating space for a string, remember to add an extra character 

for the null terminator.

19

char str_name[size];



char str[6] = "Hello";

Example

20

index 0 1 2 3 4 5

value ‘H’ ‘e’ ‘l’ ‘l’ ‘o’ \0

- If using String literals, C will set it up for you



char* str = "Hello";

Example

21

index 0 1 2 3 4 5

value ‘H’ ‘e’ ‘l’ ‘l’ ‘o’ \0

- You can also use a pointer. C will allocate the characters in read only 
memory, and the pointer will point to the first character in the string.

0x7f..str



void bar(char *str) {
str = "ok bye!";

}

int main(int argc, char *argv[]) {
char *str = "hello world!";
bar(str);
printf("%s\n", str);  // should print "ok bye!"
return EXIT_SUCCESS;

}

char* str 

char* str

main stack frame

static data

["hello world!\0"]

["ok bye!\0"]

bar stack frame

22

Modifying the argument str in bar will not effect str in main
because arguments in C are always passed by value. 

In order to modify str in main, we need to pass a pointer to a 
pointer (char **) into bar and then dereference it:

The following code has a bug. What’s the problem, and how would you fix it?



Output Parameters

23



Output Parameters

Definition: a pointer parameter used to store output in a location specified by the caller.

Useful for returning multiple items :)

24



Output Parameter example

Consider the following function: 

void getFive(int ret){
ret = 5;

}

Will the user get the value '5'?

25

No! You need to use a pointer so that the caller can 

see the change

void getFive(int* ret){
*ret = 5;

}



Exercise 2

26



char *strcpy(char *dest, char *src) {

}

How is the caller able to see the changes in dest if C is pass-by-value?

Why do we need an output parameter? Why can’t we just return an array we create in strcpy?

27

char *ret_value = dest;
while (*src != '\0') {
*dest = *src;
src++; 
dest++; 

}
*dest = '\0';  // don’t forget the null terminator!
return ret_value;

If we allocate an array inside strcpy, it will be allocated on the stack. Thus, we have no control over this memory 
after strcpy returns, which means we can’t safely use the array whose address we’ve returned.

The caller can see the copied over string in dest since we are dereferencing dest. Note that modifications to dest 
that do not dereference will not be seen by the caller(such as dest++). Also note that if you used array syntax, 
then dest[i] is equivalent to *(dest+i).



Exercise 3

28



void product_and_sum(int *input, int length, int *product, int *sum) {

}

29

int temp_sum = 0;
int temp_product = 1;
for (int i = 0; i < length; i++) {

temp_sum += input[i];
temp_product *= input[i];

}
*sum = temp_sum;
*product = temp_product;



Exercise 4 (Bonus)

30



31

Given the following command: “mkdir -v cats dogs” and argv = 0x1000, draw a box-
and-arrow memory diagram of argv and its contents for when mkdir executes.



32

1) argv[0]

2) argv + 1

3) *(argv[1] + 1)

4) argv[0] + 1

5) argv[0][3]


