WA UNIVERSITY of WASHINGTON

Threads

L16: Threads

CSE 333 Winter 2021

Instructor:

John Zahorjan

Teaching Assistants:

Matthew Arnold
Elizabeth Haker
Leo Liao

Guramrit Singh

Nonthakit Chaiwong Jacob Cohen
Henry Hung Chase Lee
Tim Mandzyuk Benjamin Shmidt

CSE333, Winter 2021

WA UNIVERSITY of WASHINGTON L16: Threads

Process

« A processis a program
in execution

= A process is associated
with an address space

« A process provides
isolation

Virtual Address Space

(ON)

l stack

T heap

static data

instructions

CSE333, Winter 2021

WA UNIVERSITY of WASHINGTON L16: Threads

Single Threaded Process

+» A processisa program
In execution
+» A process contains one

or more threads of
execution

CPU Core

registers

Virtual Address Space

pc ——

(ON)

l stack

T heap

static data

instructions

CSE333, Winter 2021

WA UNIVERSITY of WASHINGTON

L16: Threads

Multi-Threaded Process

CPU Core

registers

CPU Core

registers

Sp

sp

pC
pC

Virtual Address Space

(ON)

l stack

l stack

T heap

static data

instructions

CSE333, Winter 2021

CSE333, Winter 2021

WA UNIVERSITY of WASHINGTON L16: Threads

Multi-Threaded Process

Virtual Address Space

+ Execution of a thread may 0S —
be suspended due to: registers
= Having done a blocking call l stack

- e.g., read() Sp—
= The OS assigning fewer cores l stack
to a process than it has sp —*
threads
T heap
CPU Core
static data
PE ™1 instructions
pc ——

registers

CSE333, Winter 2021

WA UNIVERSITY of WASHINGTON L16: Threads

C++ and Threads

» Every C++ program starts with a single main thread that
begins execution in main()

« Additional threads can be created as std::thread objects

» A new thread starts execution by calling a method
provided as an argument to the thread constructor

« The new thread terminates when it returns from that
method

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

Creating Threads

main thread

int main(int argc, char *argv|[])

{ .
// create thread / 6/@

std::thread(do_work, 1, 2); _ l _ _
void do_work(int a, int b)

o -

}
& Possible ka-boom!

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

Join-ing Threads

Join: One thread waits for another to terminate

main thread

6;8 A program must not

terminate while there are
any joinable threads

int main(int argc, char *argv|[])

| GC
// create thread / l
auto th =|std::thread(do_work, 1, 2/

th.join(); leq— void do_work(int a, int b)

o {

v ““““““\“““ }

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

Detach-ing Threads

Detach: Indicate that join() will never be called on this thread

main thread

6;8 A detached thread is not

joinable.

int main(int argc, char *argv|[])

| C
// create thread / l
std::thread(do_work, 1, 2).detach();/v

void do_work(int a, int b)

- ™

:)

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

Performance and Threads

+ Itis tempting to think of threads as a mechanism for parallel
execution
= Parallel: the goal is to obtain a result quicker

= Sometimes threads simplify program structure: concurrency

+ Because a single thread can use only a single core, to use more
than one core at a time there must be threads
" That doesn’t necessarily mean your code has to manage them...

+ The relationship between number of threads and performance
is complicated

" more threads => more potential parallelism
" more parallelism => more contention

" more threads => more thread management overhead

10

WA UNIVERSITY of WASHINGTON L16: Threads

Example Parallel Code

CSE333, Winter 2021

std::array<int,100000000> global_array;

void init_array (decltype(global_array.size()) start, decltype(global_array.size()) end) {
if (end > global_array.size()) end = global_array.size();

std::cout << std::this_thread::get_id() << ": " << start << " --" << end << std::end|;
for (decltype(start) i=start; i<end; ++i)
global_array[i] = i;
}

int main (int argc, char *argv[])

Initialize an array of 10

0,000,000 ints

{
if (argc !=2) usage(argv[0]);

auto N_threads = atol(argv([1]);

if (N_threads <=0) usage(argv[0]);

auto stride = (global_array.size() + N_threads - 1) / N_threads;
decltype(stride) start = 0;

std::vector<std::thread> threads;

for (int i=0; i<N_threads; ++i) {
threads.push_back(std::thread(init_array, start, start+stride));
start += stride;

}

std::cout << "synchronizing all threads...\n";
for (auto& th : threads) th.join();

return O;

}

11

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

Speedup

% S(n)=T(1) / T(n), where
= S(n) is the speedup using n threads

= T(k) is the elapsed time required to complete using k threads

+ ldeal S(n) ==
= S(n)is normally less than n

« Sometimes much less...

" |t’s not impossible for it to be greater than n

12

CSE333, Winter 2021

WA UNIVERSITY of WASHINGTON L16: Threads

Measured Speedup on attu4

+ Xeon E5-2670v3
« 12 cores, 24 threads

e speedUup e ideal

16
14
12

10

Speedup
(o]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of Threads

13

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

Example Parallel Code Total CPU Time

1.6
1.4

1.2

0.8

Total CPU Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Number of Threads

14

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

Threads for Concurrency

» Sometimes the code needs to do a number of largely
separate tasks, each of which is nice represented as a
single thread of control

» In some of these cases, threads need to make blocking
system calls

= |f there’s only one thread, the application is completely inert
when that one thread blocks on a system call (e.g., read)

« Threads for concurrency are about making it easier to
write the program

15

WA UNIVERSITY of WASHINGTON

L16: Threads

network
(socket)

CSE333, Winter 2021

Example Concurrent Application

Main thread creates two threads

One sits in a loop accepting

connections

* jtthensitsin aloop reading from

connection and writing back to
connection

The other sits in a loop reading from

stdin and writing to stdout

The main thread join’s the two threads

it has created, and then exits

16

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

Main thread code

bool done = false;

int main(int argc, char const *argv[])

{

int server_fd;
try
{

server_fd = make_server_socket(PORT);

}

catch (std::exception &e)

{

std::cout << e.what() << std::endl;
exit (1);
}

std::thread network_thread(accept_connection, server_fd);
std::thread keyboard_thread(read_keyboard);

network_thread.join();
close(server_fd);

keyboard_thread.join();
return O;

}

17

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

Keyboard (stdin/stdout) thread code

void read_keyboard()
EOF from keyboard can shut
{

char buffer[1024]; down the app.
while (fgets(buffer, 1023, stdin)) { (The app cannot be shut ‘_jown
orintf("stdin: %s" buffer); from its network connection.)
if (Istrcmp(buffer, "q\n"))
break;

}

done = true;
std::cout << "--- Keyboard thread exiting" << std::endl;

}

18

WA UNIVERSITY of WASHINGTON L16: Threads

CSE333, Winter 2021

Network thread code (Part 1)

void accept_connection(int server_fd)
{
int new_socket, addrlen, valread;
struct sockaddr_in address;
char buffer[1024] = {0};

struct timeval timeout;
timeout.tv_sec =5;
timeout.tv_usec = 0;

Can’t kill this thread from another
thread, so it has to wake up from
waiting for a connection every so
often. (Every 5 seconds here.)

if (setsockopt (server_fd, SOL_SOCKET, SO_RCVTIMEO, (char *)&timeout,

sizeof(timeout)) < 0)

{

perror("setsockopt failed");
return;

}

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

Network thread code (Part 2)

while(!done

{

new_socket = accept(server— truct sockaddr *)&address,(socklen_t*)&addrlen);

if (new_socket <0)

{
if (errno == EAGAIN | | errno == EWOULDBLOCK) Wake up regularly to check
{ done flag.
std::cout << "Network thread ... << std::endl;
continue;
}

std::cout << std::strerror(errno) << std::endl;
perror("accept failed");
return;

}

std::cout << "--- Have network connection" << std::endl;
while ((valread = read(new_socket , buffer, 1024)) >0)

{ This code blocks indefinitely if
send(new_socket , buffer, valread , 0);
. " connected and the other end
printf("network: %s", buffer); ,)
} doesn’t send anything.

close(new_socket); Maybe...
std::cout << "--- Network connection closed" << std::endl;

}

std::cout << "--- Network thread exiting" << std::endl;

}

20

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

Threads for Concurrency Summary: Pro’s

+ We used many threads for concurrency because it
simplified the programming model

Each thread represented a largely independent computation

The state of the computation (thread) was reflected “in the usual
way” —in the call stack of the thread

The computations involved high latency operations

We addressed the high latency operation using blocking calls
- Rather than “polling”

Overall efficiency is good because one thread blocking doesn’t
interfere with the progress of other thread

Have the possibility for physical parallelism (use more than one
core)

21

WA UNIVERSITY of WASHINGTON L16: Threads

CSE333, Winter 2021

Threads for Concurrency: Con’s

+ When the per-thread computations aren’t so

independent, probably have race conditions that must be
addressed

= We'll look at this a bit in a bit

" For now, read this as “when computations aren’t entirely

independent, we need synchronization, and that is a new level of
complexity and difficult bugs”

% It’s hard to know how many threads to use

" Too many results in high thread management overhead

" Too few results in insufficient concurrency and resultant delays

22

CSE333, Winter 2021

WA UNIVERSITY of WASHINGTON L16: Threads

An Alternative: Event-Driven Execution

» Itisn’t inherent in the idea, but typically this implies using only
a single thread

= Minimal thread management overhead

" No race conditions

» Instead of one thread per blocking call (e.g., socket or file
read), a single thread waits for any of them to become

available
» Having available data is one example of “an event”

= Events can be logical/software induced — Java Observer/Observable
- A handler routine is called when an event happens

» Program execution is a succession of events firing
(asynchronously) and event handlers being invoked

23

WA UNIVERSITY of WASHINGTON L16: Threads

CSE333, Winter 2021

An Alternative: Event-Driven Execution

+~ Often the code that knows how to accept event handler
registrations, wait for an event, and invoke the
appropriate handler is infrastructure

= E.g., Windows message loop, Java Observer/Observable, any
number of language runtimes

« The application is (largely) composed of a set of handlers

+ C++ does not have a generally accepted event
infrastructure

» In the examples I'll show you, I've built a crude one as
part of the app

24

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

Concurrent vs. Event-Driven

Concurrent Event-Driven
&Q socket file
—»(F=-._ —Q handler handler
network - Echo network N B}
(socket) e T App (socket) : @ ‘
&G |
¥ ® Q ®
stdin stdBut stdin std‘c')ut

25

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

Event-Driven App Code: main()

/* Single threaded, event-driven implementation
of multiple input stream example echo app */
int main(int argc, char const *argv([])

try “listener” is the event infrastructure object
listener.RegisterStream(fileno(stdin), read_file); «———— when stdin has input, call read_file()
int server_fd = make_server_socket(PORT);
listener.RegisterStream(server_fd, accept_connection); _ When client connection arrives, call
accept_connection()
listener.run(); < Okay, go into event loop (and don’t return
} h until it’s time to terminate execution)
catch (std::exception &e)
std::cout << e.what() << std::endl;
exit (1);
return O;

26

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

Event-Driven App Code: file handler

/* Callback for reading from a file */
void read_file(int fd) < Called by listener whenever user types something

{
char buffer[1024] = {0};

/* Get FILE* from fd to use with fgets() */

FILE* in_file = fdopen(fd, "r");

fgets(buffer, 1023, in_file);

std::cout << "From file stream: " << buffer

if (Istrcmp(buffer, "g\n"))
listener.done(); X

}

} “=Essential stdin functionality of app (with a bug)

Program exit logic. Will cause listener::run() to return.

27

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

Event-Driven App Code: socket handler

/* Callback for listener socket */
void accept_connection(int server_fd)

{

int new_socket, addrlen;
struct sockaddr_in address;

new_socket = accept(server_fd, (struct sockaddr *)&address,(socklen_t*)&addrlen);
if (new_socket<0)

throw std::runtime_error("accept failed");

listener.RegisterStream(new_socket, read_socket);

}

28

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

Event-Driven App Code: client socket handler

/* Callback for reading from a connected socket */
void read_socket(int client_socket)

{
char buffer[1024] = {0};

int n_read = recv(client_socket , buffer, 1023, MSG_DONTWAIT);
if(n_read>0)
{
send(client_socket , buffer, n_read, 0);
buffer[n_read] = "\0';
printf("From network stream: %s", buffer);
}
elseif (n_read ==0)
{

listener.UnregisterStream(client_socket);

Y
else if (/* n_read <0 */ errno != EWOULDBLOCK)

{

throw std::runtime_error("Socket not ready for recv?");

}
}

29

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

App Code Summary

+» The app is basically a set of event handlers
" There is a setup phase that registers the handlers

" Then the app sits in the event handler infrastructure calling
handlers as events happen

= Works beautifully when handling an event is independent of
everything else that has or will happen...

+» Reminder: single threaded execution, so no race
conditions

30

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

Infrastructure Implementation

+ select() is a somewhat deprecated call whose input is a list of
file descriptors

= select() blocks until any one (or more) of the file descriptors indicates it
“is ready”

- has input to read, and/or is capable of accepting new output to write

= select() returns an indication of which file descriptors are ready

 plusit can do more, so look at the man page if you want to know more

« The modern version is poll()

+ Despite that, you’re hear the term “select loop” — that’s the
heart of the event handler infrastructure

31

WA UNIVERSITY of WASHINGTON L16: Threads

Infrastructure Implementation

typedef std::function<void(int)> SLCallback;

class StreamListener {

public:
/* n_fds is the maximum number of file descriptors the listener is configured to monitor */
StreamListener(unsigned int n_fds = 10) : max_fds_(n_fds) {...}
~StreamlListener();

bool RegisterStream(int fd, SLCallback event_callback, SLCallback destroy callback=CloseFd);
bool UnregisterStream(int fd); St

void run();
/* tells run to return */
void done() { ... }

private: ‘
static void CloseFd(int fd) { close(fd); }

std::map<int, std::pair<SLCallback, SLCallback>> listener;
unsigned int max_fds_;

|5

CSE333, Winter 2021

32

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

Infrastructure Implementation

StreamListener::~StreamListener()

{
if (poll_fds_)
delete [] poll_fds_;

A

Free dynamically allocated memory

/* Invoke destroy callback on registered streams */
for (auto&& [first,second] : listener)
second.second (fl rst); < Invoke file descriptor destruction method callback

33

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

Infrastructure Implementation

void StreamlListener::run() {
while(!done) {
/* Convert map to array structure needed by poll() */
RepopulatePollFds();
/* Wait for something to happen... */
int rc = poll(poll_fds_, n_fds_, -1); < Wait for some source to become ready
if (rc<0) throw std::runtime_error("poll failed");

/* Figure out what happened */
for (unsigned int i=0; i<n_fds_; i++) {
if (poll_fds_[i].revents ==0) continue;
if (poll_fds_[i].revents == POLLIN) { Find the ready descriptor(s) and event type
auto it = listener.find(poll_fds_[i].fd);
if (it == listener.end())
throw std::runtime_error("Got poll eve
it->second.first(it->first);

n file descriptor that isn't registered");

}

else if (poll_fds_[i].revents == POLLNVAL) UnregisterStream(poll _fds_[i].fd);

else std::cout << "Bad revents: " << poll_fds_[i].revents << " on " << poll_fds_[i].fd << std::end];

}
}
}

34

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

Accessing the Example Code

+ attu:/cse/courses/cse333/21wi/public/concurrency/

+ attu:/cse/courses/cse333/21wi/public/event-driven/

» Note: there are known bugs having to do with robustness
and error detection/resolution

» Make sure to include the pthread library in the build:
g++ -std=c++17 —g —Wall *.cc —| pthread

35

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

Bonus Topic: The Problem, In Real Life
(approximately)

+ You order dinner delivered to your front door
+» How do you know when it arrives?

<« YOUu can
= Stand at the front door and wait

" Do something else, but go to the door every once in a while and check
 If it’s not there you can go back inside, or
 If it’s not there you can just wait because you have nothing better to do

" Arrange for the delivery person to text you when your dinner arrives

® Train your dog to wait at the door for your dinner (but now you’re
waiting for the dog, so you have the same problem)

« Note: If your dog could eat your dinner for you that would solve the waiting problem

Key: synchronous single-threaded | asynchronous | multi-threaded

36

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

Long Latency Operations

When your code calls read(), it stops executing until something has been

read (or an error has occurred or EOF has occurred or a signal is received or...)

« Why?

« It can be useful to think of long-latency operations as having two distinct
sub-operations
= start

= done

+ Why?

37

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

Long Latency Operation Completion Detection

%+ How can the originator of the operation know when it has
completed?

+ Depends on how execution is done

Synchronous execution - the thread originating the operation doesn’t run again
until the operation finishes

= Asynchronous execution — the thread originating the operation continues

running

+ Depends on how notification is done

Synchronous notification — the initiating thread takes some action to check
whether the operation has completed

Asynchronous notification —a method is registered to be run when completion
occurs, and then is run when completion occurs

No notification

38

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

Procedure Call Semantics: Sync / Sync

% Synchronous Execution / Synchronous Notification

= Example: procedure call

- calling thread carries out the long latency work (procedure execution)

= Example: (blocking) read()

- operating system suspends execution of calling thread until data is
available to be read

" Continuing execution == operation has finished

% This is the simplest model for programmers

+» “Remote Procedure Call” (RPC) is a(ny) network protocol
whose semantics are those of local procedure call

39

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

Polling: Async / Sync
» A invoking thread starts an operation and then goes on

executing without waiting for operation to complete

» The operation sets some state (e.g., a variable) to indicate
when it has completed

» The invoking thread checks the state variable whenever it feels
like
"= Could be in a tight “polling loop” (doing nothing but checking)

® Could check “every once in a while” (every 5 msec., every 10 sec., once
per day, ...)

Polling mostly make sense for operations whose latency (time
to completion) is predictable

40

WA UNIVERSITY of WASHINGTON L16: Threads

CSE333, Winter 2021

Polling: Example

« First of all, you should feel very uneasy if you find yourself
writing code that does polling!

" |n most circumstances, there’s some better (more efficient/simpler)
solution

« Example: sockets

= you can set a network socket to be “non-blocking”

= When you perform a read() operation on it, you get an answer back
immediately

« The answer might be the data you wanted
« Otherwise the answer is an error (EWOULDBLOCK)

- Either way, your thread continues running and can do whatever you want

41

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

Join: Async / Sync

« Threads:

" create a thread (as a C++ std::thread object, say, th), which causes
it to start running

" th.join() suspends the calling thread until thread th terminates

<« Processes

" fork() a process. You get back the new (child) process’s process id
(pid)

= wait(pid) to wait for it to terminate

" The difference between
- emacs myfile.txt

- emacs myfile.txt &

42

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

Async / synch

+» When you start some operation asynchronously, there
will almost aways be two things you can do to check on its
completion status

= “wait” (or some other name): suspend my execution until the
operation has finished

= “test” (or some other name): return an indication of whether or
not it has finished, but don’t block me no matter what

43

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

Example using C++ futures/async

% Synch/Synch
= procedure call
+ Asynch / Synch
" wait

= poll

+ Plus bonus features (and C++ qualitative review)

44

L16: Threads

WA UNIVERSITY of WASHINGTON

Example App

{

int main(int argc, char *argv|[])

<start delay_sub(args);
<do no work or do some work>
<obtain result from delay_sub()>

Execution Scenarios:

e procedure call

e async / sync where main waits

* async / sync where result is
ready when main asks for it

e polling

CSE333, Winter 2021

int delay_sub(args)
{
<do some work that
takes a while>
return value;

C++ features

e std::async, std::future
e std::ithis_thread

e time —std::chrono

* function object

* method chaining

* friend function

45

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

A Design Issue

» | want to print log messages indicating what each
“thread” is doing

» | want to print elapsed time with each message

» | want syntax something like this:
LOG() << "Main thread start operation(0, 1, 2)" << std::endl;

to produce output like this:
0.0000410800 -- Main thread start operation(0, 1, 2)

46

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

IntervalTimer Utility Class

class IntervalTimer
{
public:
IntervalTimer() { reset(); }
IntervalTimer& reset()
{
start_ = std::chrono::steady clock::now();
return *this;
}
private:
std::chrono::time_point<std::chrono::steady clock> start_;
friend std::ostream& operator<<(std::ostream&, IntervalTimer&);

I

std::ostream& operator<<(std::ostream& os, IntervalTimer &timer)

{

std::chrono::duration<float> elapsed_time = std::chrono::steady clock::now() - timer.start_;
os << elapsed_time.count();
return os;

}

47

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

Logger Utility Class

class Logger
{
public:
Logger(std::ostream& os) : os_(os) {}
std::ostream& operator()()
{
os_ << std::fixed << std::setprecision(10) << timer_ << " --";
return os_;

}
Logger& reset()

{
timer_.reset();
return *this;

}

std::ostream& ostream()

{

return os_;
private:
std::ostream& os_;
IntervalTimer timer_;

|5

48

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

delay_sub()

int delay_sub(int x, inty, int z)
{
LOG() << "delay_sub thread (" << std::this_thread::get_id() << ") sleeping for 5 seconds" << std::endl;
std::this_thread::sleep for(std::chrono::seconds(5)); // never do this!
LOG() << "delay_sub thread awake" << std::endl;
if (x+y+z<0)
throw std::runtime_error("Result is negative!");
return x+y+z;

}

49

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

Main: procedure call

LOG.reset()() << "Procedure call test" << std::endl;

LOG() << "Main thread (" << std::this_thread::get_id() << ") start operation(0, 1, 2)" << std::endl;
wait_val = delay_sub(0, 0, 0);

LOG() << "Main thread got value: " << wait_val << std::endl;

0.0000045240 -- Procedure call test

0.0000432160 -- Main thread (140487854065472) start operation(0, 1, 2)
0.0000488950 -- delay_sub thread (140487854065472) sleeping for 5 seconds
5.0001621246 -- delay_sub thread awake

5.0001931190 -- Main thread got value: 0

50

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

Main: async / synch (wait)

LOG.ostream() << std::endl;

LOG.reset()() << "First wait test" << std::endl;

LOG() << "Main thread (" << std::this_thread::get_id() << ") start operation(0, 1, 2)" << std::endl;
std::future<int> vl = std::async(&delay_sub, O, 1, 2);

LOG() << "Main thread sleeping for 2 seconds" << std::endl;
std::this_thread::sleep_for(std::chrono::seconds(2));

LOG() << "Main thread get()" << std::endl;

wait_val = vl.get();

LOG() << "Main thread got value: " << wait_val << std::endl;

0.0000001100 -- First wait test

0.0000050920 -- Main thread (140487854065472) start operation(0, 1, 2)
0.0002516000 -- Main thread sleeping for 2 seconds

0.0002674270 -- delay_sub thread (140487836149504) sleeping for 5 seconds
2.0003676414 -- Main thread get()

5.0004024506 -- delay_sub thread awake

5.0005426407 -- Main thread got value: 3

51

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

Main: async / sync (wait) Part 2

LOG.ostream() << std::endl;

LOG.reset()() << "Second wait test" << std::endl;

LOG() << "Main thread (" << std::this_thread::get_id() << ") start operation(3, 4, 5)" << std::endl;
auto v2 = std::async(delay sub, 3, 4, 5); // this is an easier way to declare the std::future

LOG() << "Main thread sleeping for 9 seconds" << std::endl;
std::this_thread::sleep_for(std::chrono::seconds(9));

LOG() << "Main thread get()" << std::endl;

wait_val = v2.get();

LOG() << "Main thread got value: " << wait_val << std::endl;

0.0000001000 -- Second wait test

0.0000039960 -- Main thread (140487854065472) start operation(3, 4, 5)
0.0000397140 -- Main thread sleeping for 9 seconds

0.0000452840 -- delay_sub thread (140487836149504) sleeping for 5 seconds
5.0001139641 -- delay_sub thread awake

9.0001583099 -- Main thread get()

9.0001926422 -- Main thread got value: 12

52

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

Main: async / sync (polling)

LOG.ostream() << std:: endl;
LOG.reset()() << "Polling test" << std::endl;
LOG() << "Main thread (" << std::this_thread::get_id() << ") start operation(6, 7, 8)" << std::endl;
auto v3 = std::async(delay_sub, 6, 7, 8);
while(1) {

auto status = v3.wait_for(std::chrono::seconds(0));

if (status == std::future_status::ready)

break;
LOG() << "Main thread sleeping for four seconds" << std::endl;
std::this_thread::sleep_for(std::chrono::seconds(4));
}

wait_val = v3.get();
LOG() << "Main thread got value: " << wait_val << std::endl;

0.0000000800 -- Polling test

0.0000031500 -- Main thread (140487854065472) start operation(6, 7, 8)
0.0000432180 -- Main thread sleeping for four seconds

0.0000984170 -- delay_sub thread (140487836149504) sleeping for 5 seconds
4.0001163483 -- Main thread sleeping for four seconds

5.0001783371 -- delay_sub thread awake

8.0002136230 -- Main thread got value: 21

53

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

C++ bonus material: delayed exception

LOG.ostream() << std::endl;

LOG.reset()() << "Exception test" << std::endl;

try {
LOG() << "Main thread (" << std::this_thread::get_id() << ") start operations(-1, -2, -3)" << std::endl;
v3 =std::async(delay_sub, -1, -2, -3);
LOG() << "Main thread sleeping for eight seconds" << std::endl;
std::this_thread::sleep_for(std::chrono::seconds(8));
int result = v3.get();
LOG() << "Exception test got result " << result << std::endl;

}

catch (std::exception &e) {

LOG() << "Exception: " << e.what() << std::endl;

}

0.0000000800 -- Exception test

0.0000022680 -- Main thread (140487854065472) start operations(-1, -2, -3)
0.0000613190 -- Main thread sleeping for eight seconds

0.0000692290 -- delay_sub thread (140487836149504) sleeping for 5 seconds
5.0001440048 -- delay_sub thread awake

8.0001573563 -- Exception: Result is negative!

54

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

Computing Bonus Material: Signals

+ What about async execution/ async notification?

= \What does it even mean?

Event-based programming (sort of)

*

Signals
= Process-level event handlers

= The “events” are integers, most of which have well-known semantics
For instance, ctrl-C is a signal (SIGINT == 2)

+ A process registers a signal handler method for a signal

» When the signal is sent/received, that method is invoked

/
0.0

The signals I'll show allow one process to signal another process

55

WA UNIVERSITY of WASHINGTON L16: Threads

sighal.cc

int counter =0;

void signal_handler(int signal)
{
std::cout << std::endl
<< "Thread " << std::this_thread::get_id()
<< " caught signal: " << signal << std::end|
<< "counter =" << counter << std::endl;

}

int main()

{

std::cout << "Process id: " << getpid() << std::endl;

// Install a signal handler
std::cout << "Installing handler for " << SIGUSR1 << std::endl;

CSE333, Winter

2021

std::signal(SIGUSR1, signal_handler); *

Register handler method for SIGUSR1 signal

std::cout << "Thread " << std::this_thread::get_id() << " going into infinite loop." << std::endl;

for (unsigned int i=0; i>=0; i++) { counter++; }

return O;

}

56

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

Example Execution

One Shell

attu8> ./a.out

Process id: 801807

Installing handler for 10

Thread 1 going into infinite loop.

Another Shell

Thread 1 caught signal: 10 nother She
-— \

counter = 1054351402 -attu8> kill -SIGUSR1 801807

-attu8> kill -SIGUSR1 801807
_attu8> kill -SIGUSR1 801807
| attu8> kill -SIGINT 801807

Thread 1 caught signal: 10

counter =-592577485

W

Thread 1 caught signal: 10
counter = 155031883

attu8>

57

WA UNIVERSITY of WASHINGTON L16: Threads CSE333, Winter 2021

Accessing the Example Code

+ attu:/cse/courses/cse333/21wi/public/concurrency/
+ attu:/cse/courses/cse333/21wi/public/event-driven/
+ attu:/cse/courses/cse333/21wi/public/async/
+ attu:/cse/courses/cse333/21wi/public/signal/

% Note: there are known bugs having to do with robustness
and error detection/resolution

+» Make sure to include the pthread library in the build:
g++ -std=c++17 —g —Wall *.cc | pthread

58

