
CSE333, Winter 2021L16: Threads

Threads
CSE 333 Winter 2021
Threads
CSE 333 Winter 2021

Instructor: John Zahorjan

Teaching Assistants:

Matthew Arnold Nonthakit Chaiwong Jacob Cohen

Elizabeth Haker Henry Hung Chase Lee

Leo Liao Tim Mandzyuk Benjamin Shmidt

Guramrit Singh

CSE333, Winter 2021L16: Threads

Process

 A process is a program
in execution
 A process is associated

with an address space

 A process provides
isolation

2

OS

stack

heap

static data

instructions

Virtual Address Space

CSE333, Winter 2021L16: Threads

Single Threaded Process

 A process is a program
in execution

 A process contains one
or more threads of
execution

3

OS

stack

heap

static data

instructions

Virtual Address Space

sp

pc

CPU Core

registers

CSE333, Winter 2021L16: Threads

Multi-Threaded Process

4

OS

heap

static data

instructions

Virtual Address Space

pc

CPU Core

registers

CPU Core

registers

stack
sp

stack
sp

pc

CSE333, Winter 2021L16: Threads

Multi-Threaded Process

5

OS

heap

static data

instructions

Virtual Address Space

pc

CPU Core

registers

registers

stack
sp

stack
sp

pc

 Execution of a thread may
be suspended due to:
 Having done a blocking call

• e.g., read()

 The OS assigning fewer cores
to a process than it has
threads

CSE333, Winter 2021L16: Threads

C++ and Threads

 Every C++ program starts with a single main thread that
begins execution in main()

 Additional threads can be created as std::thread objects

 A new thread starts execution by calling a method
provided as an argument to the thread constructor

 The new thread terminates when it returns from that
method

6

CSE333, Winter 2021L16: Threads

Creating Threads

7

int main(int argc, char *argv[])
{

...
// create thread
std::thread(do_work, 1, 2);
...

}

main thread

void do_work(int a, int b)
{

...
}

Possible ka-boom!

CSE333, Winter 2021L16: Threads

Join-ing Threads
Join: One thread waits for another to terminate

8

int main(int argc, char *argv[])
{

...
// create thread
auto th = std::thread(do_work, 1, 2);
th.join();
...

}

main thread

void do_work(int a, int b)
{

...
}

This program is bug free!

A program must not
terminate while there are
any joinable threads

CSE333, Winter 2021L16: Threads

Detach-ing Threads
Detach: Indicate that join() will never be called on this thread

9

int main(int argc, char *argv[])
{

...
// create thread
std::thread(do_work, 1, 2).detach();
...

}

main thread

void do_work(int a, int b)
{

...
}

This program is bug free!

A detached thread is not
joinable.

CSE333, Winter 2021L16: Threads

Performance and Threads

 It is tempting to think of threads as a mechanism for parallel
execution
 Parallel: the goal is to obtain a result quicker

 Sometimes threads simplify program structure: concurrency

 Because a single thread can use only a single core, to use more
than one core at a time there must be threads
 That doesn’t necessarily mean your code has to manage them...

 The relationship between number of threads and performance
is complicated
 more threads => more potential parallelism

 more parallelism => more contention

 more threads => more thread management overhead

10

CSE333, Winter 2021L16: Threads

Example Parallel Code

11

std::array<int,100000000> global_array;

void init_array (decltype(global_array.size()) start, decltype(global_array.size()) end) {
if (end > global_array.size()) end = global_array.size();

std::cout << std::this_thread::get_id() << ": " << start << " -- " << end << std::endl;
for (decltype(start) i=start; i<end; ++i)

global_array[i] = i;
}

int main (int argc, char *argv[])
{

if (argc != 2) usage(argv[0]);

auto N_threads = atol(argv[1]);
if (N_threads <= 0) usage(argv[0]);
auto stride = (global_array.size() + N_threads - 1) / N_threads;
decltype(stride) start = 0;

std::vector<std::thread> threads;
for (int i=0; i<N_threads; ++i) {

threads.push_back(std::thread(init_array, start, start+stride));
start += stride;

}

std::cout << "synchronizing all threads...\n";
for (auto& th : threads) th.join();

return 0;
}

Initialize an array of 100,000,000 ints

CSE333, Winter 2021L16: Threads

Speedup

 S(n) = T(1) / T(n), where
 S(n) is the speedup using n threads

 T(k) is the elapsed time required to complete using k threads

 Ideal S(n) == n
 S(n) is normally less than n

• Sometimes much less...

 It’s not impossible for it to be greater than n

12

CSE333, Winter 2021L16: Threads

Measured Speedup on attu4
 Xeon E5-2670 v3

 12 cores, 24 threads

13

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sp
ee

du
p

Number of Threads

speedup ideal

CSE333, Winter 2021L16: Threads

Example Parallel Code Total CPU Time

14

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

To
ta

l C
PU

 T
im

e

Number of Threads

CSE333, Winter 2021L16: Threads

Threads for Concurrency

 Sometimes the code needs to do a number of largely
separate tasks, each of which is nice represented as a
single thread of control

 In some of these cases, threads need to make blocking
system calls
 If there’s only one thread, the application is completely inert

when that one thread blocks on a system call (e.g., read)

 Threads for concurrency are about making it easier to
write the program

15

CSE333, Winter 2021L16: Threads

Example Concurrent Application

16

Echo
App

stdin stdout

network
(socket)

• Main thread creates two threads
• One sits in a loop accepting

connections
• it then sits in a loop reading from

connection and writing back to
connection

• The other sits in a loop reading from
stdin and writing to stdout

• The main thread join’s the two threads
it has created, and then exits

CSE333, Winter 2021L16: Threads

Main thread code

17

bool done = false;

int main(int argc, char const *argv[])
{
int server_fd;
try
{
server_fd = make_server_socket(PORT);

}
catch (std::exception &e)
{
std::cout << e.what() << std::endl;
exit (1);

}

std::thread network_thread(accept_connection, server_fd);
std::thread keyboard_thread(read_keyboard);

network_thread.join();
close(server_fd);

keyboard_thread.join();

return 0;
}

CSE333, Winter 2021L16: Threads

Keyboard (stdin/stdout) thread code

18

void read_keyboard()
{

char buffer[1024];
while (fgets(buffer, 1023, stdin)) {

printf("stdin: %s", buffer);
if (!strcmp(buffer, "q\n"))

break;
}
done = true;
std::cout << "--- Keyboard thread exiting" << std::endl;

}

EOF from keyboard can shut
down the app.
(The app cannot be shut down
from its network connection.)

CSE333, Winter 2021L16: Threads

Network thread code (Part 1)

19

void accept_connection(int server_fd)
{

int new_socket, addrlen, valread;
struct sockaddr_in address;
char buffer[1024] = {0};

struct timeval timeout;
timeout.tv_sec = 5;
timeout.tv_usec = 0;

if (setsockopt (server_fd, SOL_SOCKET, SO_RCVTIMEO, (char *)&timeout,
sizeof(timeout)) < 0)

{
perror("setsockopt failed");
return;

}

Can’t kill this thread from another
thread, so it has to wake up from
waiting for a connection every so
often. (Every 5 seconds here.)

CSE333, Winter 2021L16: Threads

Network thread code (Part 2)

20

while(!done)
{
new_socket = accept(server_fd, (struct sockaddr *)&address,(socklen_t*)&addrlen);
if (new_socket < 0)
{
if (errno == EAGAIN || errno == EWOULDBLOCK)
{

std::cout << "Network thread continuing..." << std::endl;
continue;

}
std::cout << std::strerror(errno) << std::endl;
perror("accept failed");
return;

}
std::cout << "--- Have network connection" << std::endl;
while ((valread = read(new_socket , buffer, 1024)) > 0)
{
send(new_socket , buffer, valread , 0);
printf("network: %s", buffer);

}
close(new_socket);
std::cout << "--- Network connection closed" << std::endl;

}
std::cout << "--- Network thread exiting" << std::endl;

}

Wake up regularly to check
done flag.

This code blocks indefinitely if
connected and the other end
doesn’t send anything.
Maybe...

CSE333, Winter 2021L16: Threads

Threads for Concurrency Summary: Pro’s
 We used many threads for concurrency because it

simplified the programming model
 Each thread represented a largely independent computation

 The state of the computation (thread) was reflected “in the usual
way” – in the call stack of the thread

 The computations involved high latency operations

 We addressed the high latency operation using blocking calls
• Rather than “polling”

 Overall efficiency is good because one thread blocking doesn’t
interfere with the progress of other thread

 Have the possibility for physical parallelism (use more than one
core)

21

CSE333, Winter 2021L16: Threads

Threads for Concurrency: Con’s

 When the per-thread computations aren’t so
independent, probably have race conditions that must be
addressed
 We’ll look at this a bit in a bit

 For now, read this as “when computations aren’t entirely
independent, we need synchronization, and that is a new level of
complexity and difficult bugs”

 It’s hard to know how many threads to use
 Too many results in high thread management overhead

 Too few results in insufficient concurrency and resultant delays

22

CSE333, Winter 2021L16: Threads

An Alternative: Event-Driven Execution
 It isn’t inherent in the idea, but typically this implies using only

a single thread
 Minimal thread management overhead

 No race conditions

 Instead of one thread per blocking call (e.g., socket or file
read), a single thread waits for any of them to become
available

 Having available data is one example of “an event”
 Events can be logical/software induced – Java Observer/Observable

 A handler routine is called when an event happens

 Program execution is a succession of events firing
(asynchronously) and event handlers being invoked

23

CSE333, Winter 2021L16: Threads

An Alternative: Event-Driven Execution

 Often the code that knows how to accept event handler
registrations, wait for an event, and invoke the
appropriate handler is infrastructure
 E.g., Windows message loop, Java Observer/Observable, any

number of language runtimes

 The application is (largely) composed of a set of handlers

 C++ does not have a generally accepted event
infrastructure

 In the examples I’ll show you, I’ve built a crude one as
part of the app

24

CSE333, Winter 2021L16: Threads

Concurrent vs. Event-Driven

25

Echo
App

stdin stdout

network
(socket)

stdin stdout

network
(socket)

Event
Manager

socket
handler

file
handler

Concurrent Event-Driven

CSE333, Winter 2021L16: Threads

Event-Driven App Code: main()

26

/* Single threaded, event-driven implementation
of multiple input stream example echo app */

int main(int argc, char const *argv[])
{
try

{
listener.RegisterStream(fileno(stdin), read_file);

int server_fd = make_server_socket(PORT);
listener.RegisterStream(server_fd, accept_connection);

listener.run();
}

catch (std::exception &e)
{
std::cout << e.what() << std::endl;
exit (1);

}
return 0;

}

“listener” is the event infrastructure object

When stdin has input, call read_file()

When client connection arrives, call
accept_connection()

Okay, go into event loop (and don’t return
until it’s time to terminate execution)

CSE333, Winter 2021L16: Threads

Event-Driven App Code: file handler

27

/* Callback for reading from a file */
void read_file(int fd)
{

char buffer[1024] = {0};
/* Get FILE* from fd to use with fgets() */
FILE* in_file = fdopen(fd, "r");
fgets(buffer, 1023, in_file);
std::cout << "From file stream: " << buffer;
if (!strcmp(buffer, "q\n"))

listener.done();
}

Called by listener whenever user types something

Essential stdin functionality of app (with a bug)

Program exit logic. Will cause listener::run() to return.

CSE333, Winter 2021L16: Threads

Event-Driven App Code: socket handler

28

/* Callback for listener socket */
void accept_connection(int server_fd)
{

int new_socket, addrlen;
struct sockaddr_in address;

new_socket = accept(server_fd, (struct sockaddr *)&address,(socklen_t*)&addrlen);
if (new_socket < 0)

throw std::runtime_error("accept failed");

listener.RegisterStream(new_socket, read_socket);
}

CSE333, Winter 2021L16: Threads

Event-Driven App Code: client socket handler

29

/* Callback for reading from a connected socket */
void read_socket(int client_socket)
{
char buffer[1024] = {0};

int n_read = recv(client_socket , buffer, 1023, MSG_DONTWAIT);
if (n_read > 0)

{
send(client_socket , buffer, n_read , 0);
buffer[n_read] = '\0';
printf("From network stream: %s", buffer);

}
else if (n_read == 0)

{
listener.UnregisterStream(client_socket);

}
else if (/* n_read < 0 */ errno != EWOULDBLOCK)

{
throw std::runtime_error("Socket not ready for recv?");

}
}

CSE333, Winter 2021L16: Threads

App Code Summary

 The app is basically a set of event handlers
 There is a setup phase that registers the handlers

 Then the app sits in the event handler infrastructure calling
handlers as events happen

 Works beautifully when handling an event is independent of
everything else that has or will happen...

 Reminder: single threaded execution, so no race
conditions

30

CSE333, Winter 2021L16: Threads

Infrastructure Implementation
 select() is a somewhat deprecated call whose input is a list of

file descriptors
 select() blocks until any one (or more) of the file descriptors indicates it

“is ready”
• has input to read, and/or is capable of accepting new output to write

 select() returns an indication of which file descriptors are ready
• plus it can do more, so look at the man page if you want to know more

 The modern version is poll()

 Despite that, you’re hear the term “select loop” – that’s the
heart of the event handler infrastructure

31

CSE333, Winter 2021L16: Threads

Infrastructure Implementation

32

typedef std::function<void(int)> SLCallback;
class StreamListener {
public:
/* n_fds is the maximum number of file descriptors the listener is configured to monitor */
StreamListener(unsigned int n_fds = 10) : max_fds_(n_fds) {...}
~StreamListener();

bool RegisterStream(int fd, SLCallback event_callback, SLCallback destroy_callback=CloseFd);
bool UnregisterStream(int fd);

void run();
/* tells run to return */
void done() { ... }

private:
static void CloseFd(int fd) { close(fd); }

std::map<int, std::pair<SLCallback, SLCallback>> listener;
unsigned int max_fds_;

};

Some details have been left out to
fit this on the slide.

CSE333, Winter 2021L16: Threads

Infrastructure Implementation

33

StreamListener::~StreamListener()
{

if (poll_fds_)
delete [] poll_fds_;

/* Invoke destroy callback on registered streams */
for (auto&& [first,second] : listener)

second.second(first);
}

Free dynamically allocated memory

Invoke file descriptor destruction method callback

CSE333, Winter 2021L16: Threads

Infrastructure Implementation

34

void StreamListener::run() {
while(!done_) {

/* Convert map to array structure needed by poll() */
RepopulatePollFds();
/* Wait for something to happen... */
int rc = poll(poll_fds_, n_fds_, -1);
if (rc < 0) throw std::runtime_error("poll failed");

/* Figure out what happened */
for (unsigned int i=0; i<n_fds_; i++) {

if (poll_fds_[i].revents == 0) continue;
if (poll_fds_[i].revents == POLLIN) {

auto it = listener.find(poll_fds_[i].fd);
if (it == listener.end())
throw std::runtime_error("Got poll event on file descriptor that isn't registered");

it->second.first(it->first);
}

else if (poll_fds_[i].revents == POLLNVAL) UnregisterStream(poll_fds_[i].fd);

else std::cout << "Bad revents: " << poll_fds_[i].revents << " on " << poll_fds_[i].fd << std::endl;
}

}
}

Wait for some source to become ready

Find the ready descriptor(s) and event type

CSE333, Winter 2021L16: Threads

Accessing the Example Code

 attu:/cse/courses/cse333/21wi/public/concurrency/

 attu:/cse/courses/cse333/21wi/public/event-driven/

 Note: there are known bugs having to do with robustness
and error detection/resolution

 Make sure to include the pthread library in the build:
g++ -std=c++17 –g –Wall *.cc –l pthread

35

CSE333, Winter 2021L16: Threads

Bonus Topic: The Problem, In Real Life
(approximately)

 You order dinner delivered to your front door

 How do you know when it arrives?

 You can
 Stand at the front door and wait

 Do something else, but go to the door every once in a while and check
• If it’s not there you can go back inside, or

• If it’s not there you can just wait because you have nothing better to do

 Arrange for the delivery person to text you when your dinner arrives

 Train your dog to wait at the door for your dinner (but now you’re
waiting for the dog, so you have the same problem)
• Note: If your dog could eat your dinner for you that would solve the waiting problem

36

Key: synchronous single-threaded | asynchronous | multi-threaded

CSE333, Winter 2021L16: Threads

Long Latency Operations
 When your code calls read(), it stops executing until something has been

read (or an error has occurred or EOF has occurred or a signal is received or...)

 Why?

 It can be useful to think of long-latency operations as having two distinct
sub-operations
 start

 done

 Why?

37

CSE333, Winter 2021L16: Threads

Long Latency Operation Completion Detection
 How can the originator of the operation know when it has

completed?

 Depends on how execution is done
 Synchronous execution - the thread originating the operation doesn’t run again

until the operation finishes

 Asynchronous execution – the thread originating the operation continues
running

 Depends on how notification is done
 Synchronous notification – the initiating thread takes some action to check

whether the operation has completed

 Asynchronous notification – a method is registered to be run when completion
occurs, and then is run when completion occurs

 No notification
38

CSE333, Winter 2021L16: Threads

Procedure Call Semantics: Sync / Sync

 Synchronous Execution / Synchronous Notification
 Example: procedure call

• calling thread carries out the long latency work (procedure execution)

 Example: (blocking) read()
• operating system suspends execution of calling thread until data is

available to be read

 Continuing execution == operation has finished

 This is the simplest model for programmers

 “Remote Procedure Call” (RPC) is a(ny) network protocol
whose semantics are those of local procedure call

39

CSE333, Winter 2021L16: Threads

Polling: Async / Sync
 A invoking thread starts an operation and then goes on

executing without waiting for operation to complete

 The operation sets some state (e.g., a variable) to indicate
when it has completed

 The invoking thread checks the state variable whenever it feels
like
 Could be in a tight “polling loop” (doing nothing but checking)

 Could check “every once in a while” (every 5 msec., every 10 sec., once
per day, ...)

 Polling mostly make sense for operations whose latency (time
to completion) is predictable

40

CSE333, Winter 2021L16: Threads

Polling: Example
 First of all, you should feel very uneasy if you find yourself

writing code that does polling!
 In most circumstances, there’s some better (more efficient/simpler)

solution

 Example: sockets
 you can set a network socket to be “non-blocking”

 When you perform a read() operation on it, you get an answer back
immediately
• The answer might be the data you wanted

• Otherwise the answer is an error (EWOULDBLOCK)

• Either way, your thread continues running and can do whatever you want

41

CSE333, Winter 2021L16: Threads

Join: Async / Sync

 Threads:
 create a thread (as a C++ std::thread object, say, th), which causes

it to start running

 th.join() suspends the calling thread until thread th terminates

 Processes
 fork() a process. You get back the new (child) process’s process id

(pid)

 wait(pid) to wait for it to terminate

 The difference between
• emacs myfile.txt

• emacs myfile.txt &

42

CSE333, Winter 2021L16: Threads

Async / synch

 When you start some operation asynchronously, there
will almost aways be two things you can do to check on its
completion status
 “wait” (or some other name): suspend my execution until the

operation has finished

 “test” (or some other name): return an indication of whether or
not it has finished, but don’t block me no matter what

43

CSE333, Winter 2021L16: Threads

Example using C++ futures/async

 Synch/Synch
 procedure call

 Asynch / Synch
 wait

 poll

 Plus bonus features (and C++ qualitative review)

44

CSE333, Winter 2021L16: Threads

Example App

45

int delay_sub(args)
{

<do some work that
takes a while>

return value;
}

int main(int argc, char *argv[])
{

<start delay_sub(args);
<do no work or do some work>
<obtain result from delay_sub()>

}

Execution Scenarios:
• procedure call
• async / sync where main waits
• async / sync where result is

ready when main asks for it
• polling

C++ features
• std::async, std::future
• std::this_thread
• time – std::chrono
• function object
• method chaining
• friend function

CSE333, Winter 2021L16: Threads

A Design Issue

 I want to print log messages indicating what each
“thread” is doing

 I want to print elapsed time with each message

 I want syntax something like this:
LOG() << "Main thread start operation(0, 1, 2)" << std::endl;
to produce output like this:
0.0000410800 -- Main thread start operation(0, 1, 2)

46

CSE333, Winter 2021L16: Threads

IntervalTimer Utility Class

47

class IntervalTimer
{
public:
IntervalTimer() { reset(); }
IntervalTimer& reset()

{
start_ = std::chrono::steady_clock::now();
return *this;

}
private:
std::chrono::time_point<std::chrono::steady_clock> start_;
friend std::ostream& operator<<(std::ostream&, IntervalTimer&);

};

std::ostream& operator<<(std::ostream& os, IntervalTimer &timer)
{
std::chrono::duration<float> elapsed_time = std::chrono::steady_clock::now() - timer.start_;
os << elapsed_time.count();
return os;

}

CSE333, Winter 2021L16: Threads

Logger Utility Class

48

class Logger
{
public:
Logger(std::ostream& os) : os_(os) {}
std::ostream& operator()()

{
os_ << std::fixed << std::setprecision(10) << timer_ << " -- ";
return os_;

}
Logger& reset()

{
timer_.reset();
return *this;

}
std::ostream& ostream()

{
return os_;

}
private:
std::ostream& os_;
IntervalTimer timer_;

};

CSE333, Winter 2021L16: Threads

delay_sub()

49

int delay_sub(int x, int y, int z)
{
LOG() << "delay_sub thread (" << std::this_thread::get_id() << ") sleeping for 5 seconds" << std::endl;
std::this_thread::sleep_for(std::chrono::seconds(5)); // never do this!
LOG() << "delay_sub thread awake" << std::endl;
if (x+y+z < 0)

throw std::runtime_error("Result is negative!");
return x+y+z;

}

CSE333, Winter 2021L16: Threads

Main: procedure call

50

LOG.reset()() << "Procedure call test" << std::endl;
LOG() << "Main thread (" << std::this_thread::get_id() << ") start operation(0, 1, 2)" << std::endl;
wait_val = delay_sub(0, 0, 0);
LOG() << "Main thread got value: " << wait_val << std::endl;

0.0000045240 -- Procedure call test
0.0000432160 -- Main thread (140487854065472) start operation(0, 1, 2)
0.0000488950 -- delay_sub thread (140487854065472) sleeping for 5 seconds
5.0001621246 -- delay_sub thread awake
5.0001931190 -- Main thread got value: 0

CSE333, Winter 2021L16: Threads

Main: async / synch (wait)

51

LOG.ostream() << std::endl;
LOG.reset()() << "First wait test" << std::endl;
LOG() << "Main thread (" << std::this_thread::get_id() << ") start operation(0, 1, 2)" << std::endl;
std::future<int> v1 = std::async(&delay_sub, 0, 1, 2);
LOG() << "Main thread sleeping for 2 seconds" << std::endl;
std::this_thread::sleep_for(std::chrono::seconds(2));
LOG() << "Main thread get()" << std::endl;
wait_val = v1.get();
LOG() << "Main thread got value: " << wait_val << std::endl;

0.0000001100 -- First wait test
0.0000050920 -- Main thread (140487854065472) start operation(0, 1, 2)
0.0002516000 -- Main thread sleeping for 2 seconds
0.0002674270 -- delay_sub thread (140487836149504) sleeping for 5 seconds
2.0003676414 -- Main thread get()
5.0004024506 -- delay_sub thread awake
5.0005426407 -- Main thread got value: 3

CSE333, Winter 2021L16: Threads

Main: async / sync (wait) Part 2

52

LOG.ostream() << std::endl;
LOG.reset()() << "Second wait test" << std::endl;
LOG() << "Main thread (" << std::this_thread::get_id() << ") start operation(3, 4, 5)" << std::endl;
auto v2 = std::async(delay_sub, 3, 4, 5); // this is an easier way to declare the std::future
LOG() << "Main thread sleeping for 9 seconds" << std::endl;
std::this_thread::sleep_for(std::chrono::seconds(9));
LOG() << "Main thread get()" << std::endl;
wait_val = v2.get();
LOG() << "Main thread got value: " << wait_val << std::endl;

0.0000001000 -- Second wait test
0.0000039960 -- Main thread (140487854065472) start operation(3, 4, 5)
0.0000397140 -- Main thread sleeping for 9 seconds
0.0000452840 -- delay_sub thread (140487836149504) sleeping for 5 seconds
5.0001139641 -- delay_sub thread awake
9.0001583099 -- Main thread get()
9.0001926422 -- Main thread got value: 12

CSE333, Winter 2021L16: Threads

Main: async / sync (polling)

53

LOG.ostream() << std:: endl;
LOG.reset()() << "Polling test" << std::endl;
LOG() << "Main thread (" << std::this_thread::get_id() << ") start operation(6, 7, 8)" << std::endl;
auto v3 = std::async(delay_sub, 6, 7, 8);
while(1) {

auto status = v3.wait_for(std::chrono::seconds(0));
if (status == std::future_status::ready)

break;
LOG() << "Main thread sleeping for four seconds" << std::endl;
std::this_thread::sleep_for(std::chrono::seconds(4));

}
wait_val = v3.get();
LOG() << "Main thread got value: " << wait_val << std::endl;

0.0000000800 -- Polling test
0.0000031500 -- Main thread (140487854065472) start operation(6, 7, 8)
0.0000432180 -- Main thread sleeping for four seconds
0.0000984170 -- delay_sub thread (140487836149504) sleeping for 5 seconds
4.0001163483 -- Main thread sleeping for four seconds
5.0001783371 -- delay_sub thread awake
8.0002136230 -- Main thread got value: 21

CSE333, Winter 2021L16: Threads

C++ bonus material: delayed exception

54

LOG.ostream() << std::endl;
LOG.reset()() << "Exception test" << std::endl;
try {

LOG() << "Main thread (" << std::this_thread::get_id() << ") start operations(-1, -2, -3)" << std::endl;
v3 = std::async(delay_sub, -1, -2, -3);
LOG() << "Main thread sleeping for eight seconds" << std::endl;
std::this_thread::sleep_for(std::chrono::seconds(8));
int result = v3.get();
LOG() << "Exception test got result " << result << std::endl;

}
catch (std::exception &e) {

LOG() << "Exception: " << e.what() << std::endl;
}

0.0000000800 -- Exception test
0.0000022680 -- Main thread (140487854065472) start operations(-1, -2, -3)
0.0000613190 -- Main thread sleeping for eight seconds
0.0000692290 -- delay_sub thread (140487836149504) sleeping for 5 seconds
5.0001440048 -- delay_sub thread awake
8.0001573563 -- Exception: Result is negative!

CSE333, Winter 2021L16: Threads

Computing Bonus Material: Signals
 What about async execution/ async notification?
 What does it even mean?

• Event-based programming (sort of)

 Signals
 Process-level event handlers

 The “events” are integers, most of which have well-known semantics
• For instance, ctrl-C is a signal (SIGINT == 2)

 A process registers a signal handler method for a signal

 When the signal is sent/received, that method is invoked

 The signals I’ll show allow one process to signal another process

55

CSE333, Winter 2021L16: Threads

signal.cc

56

int counter = 0;

void signal_handler(int signal)
{
std::cout << std::endl

<< "Thread " << std::this_thread::get_id()
<< " caught signal: " << signal << std::endl
<< "counter = " << counter << std::endl;

}

int main()
{
std::cout << "Process id: " << getpid() << std::endl;

// Install a signal handler
std::cout << "Installing handler for " << SIGUSR1 << std::endl;
std::signal(SIGUSR1, signal_handler);

std::cout << "Thread " << std::this_thread::get_id() << " going into infinite loop." << std::endl;
for (unsigned int i=0; i>=0; i++) { counter++; }

return 0;
}

Register handler method for SIGUSR1 signal

CSE333, Winter 2021L16: Threads

Example Execution

57

attu8> ./a.out
Process id: 801807
Installing handler for 10
Thread 1 going into infinite loop.

Thread 1 caught signal: 10
counter = 1054351402

Thread 1 caught signal: 10
counter = -592577485

Thread 1 caught signal: 10
counter = 155031883

attu8>

attu8> kill -SIGUSR1 801807
attu8> kill -SIGUSR1 801807
attu8> kill -SIGUSR1 801807
attu8> kill -SIGINT 801807

One Shell

Another Shell

CSE333, Winter 2021L16: Threads

Accessing the Example Code

 attu:/cse/courses/cse333/21wi/public/concurrency/

 attu:/cse/courses/cse333/21wi/public/event-driven/

 attu:/cse/courses/cse333/21wi/public/async/

 attu:/cse/courses/cse333/21wi/public/signal/

 Note: there are known bugs having to do with robustness
and error detection/resolution

 Make sure to include the pthread library in the build:
g++ -std=c++17 –g –Wall *.cc –l pthread

58

