
CSE333, Winter 2021L16: Threads

Threads
CSE 333 Winter 2021
Threads
CSE 333 Winter 2021

Instructor: John Zahorjan

Teaching Assistants:

Matthew Arnold Nonthakit Chaiwong Jacob Cohen

Elizabeth Haker Henry Hung Chase Lee

Leo Liao Tim Mandzyuk Benjamin Shmidt

Guramrit Singh

CSE333, Winter 2021L16: Threads

Process

 A process is a program
in execution
 A process is associated

with an address space

 A process provides
isolation

2

OS

stack

heap

static data

instructions

Virtual Address Space

CSE333, Winter 2021L16: Threads

Single Threaded Process

 A process is a program
in execution

 A process contains one
or more threads of
execution

3

OS

stack

heap

static data

instructions

Virtual Address Space

sp

pc

CPU Core

registers

CSE333, Winter 2021L16: Threads

Multi-Threaded Process

4

OS

heap

static data

instructions

Virtual Address Space

pc

CPU Core

registers

CPU Core

registers

stack
sp

stack
sp

pc

CSE333, Winter 2021L16: Threads

Multi-Threaded Process

5

OS

heap

static data

instructions

Virtual Address Space

pc

CPU Core

registers

registers

stack
sp

stack
sp

pc

 Execution of a thread may
be suspended due to:
 Having done a blocking call

• e.g., read()

 The OS assigning fewer cores
to a process than it has
threads

CSE333, Winter 2021L16: Threads

C++ and Threads

 Every C++ program starts with a single main thread that
begins execution in main()

 Additional threads can be created as std::thread objects

 A new thread starts execution by calling a method
provided as an argument to the thread constructor

 The new thread terminates when it returns from that
method

6

CSE333, Winter 2021L16: Threads

Creating Threads

7

int main(int argc, char *argv[])
{

...
// create thread
std::thread(do_work, 1, 2);
...

}

main thread

void do_work(int a, int b)
{

...
}

Possible ka-boom!

CSE333, Winter 2021L16: Threads

Join-ing Threads
Join: One thread waits for another to terminate

8

int main(int argc, char *argv[])
{

...
// create thread
auto th = std::thread(do_work, 1, 2);
th.join();
...

}

main thread

void do_work(int a, int b)
{

...
}

This program is bug free!

A program must not
terminate while there are
any joinable threads

CSE333, Winter 2021L16: Threads

Detach-ing Threads
Detach: Indicate that join() will never be called on this thread

9

int main(int argc, char *argv[])
{

...
// create thread
std::thread(do_work, 1, 2).detach();
...

}

main thread

void do_work(int a, int b)
{

...
}

This program is bug free!

A detached thread is not
joinable.

CSE333, Winter 2021L16: Threads

Performance and Threads

 It is tempting to think of threads as a mechanism for parallel
execution
 Parallel: the goal is to obtain a result quicker

 Sometimes threads simplify program structure: concurrency

 Because a single thread can use only a single core, to use more
than one core at a time there must be threads
 That doesn’t necessarily mean your code has to manage them...

 The relationship between number of threads and performance
is complicated
 more threads => more potential parallelism

 more parallelism => more contention

 more threads => more thread management overhead

10

CSE333, Winter 2021L16: Threads

Example Parallel Code

11

std::array<int,100000000> global_array;

void init_array (decltype(global_array.size()) start, decltype(global_array.size()) end) {
if (end > global_array.size()) end = global_array.size();

std::cout << std::this_thread::get_id() << ": " << start << " -- " << end << std::endl;
for (decltype(start) i=start; i<end; ++i)

global_array[i] = i;
}

int main (int argc, char *argv[])
{

if (argc != 2) usage(argv[0]);

auto N_threads = atol(argv[1]);
if (N_threads <= 0) usage(argv[0]);
auto stride = (global_array.size() + N_threads - 1) / N_threads;
decltype(stride) start = 0;

std::vector<std::thread> threads;
for (int i=0; i<N_threads; ++i) {

threads.push_back(std::thread(init_array, start, start+stride));
start += stride;

}

std::cout << "synchronizing all threads...\n";
for (auto& th : threads) th.join();

return 0;
}

Initialize an array of 100,000,000 ints

CSE333, Winter 2021L16: Threads

Speedup

 S(n) = T(1) / T(n), where
 S(n) is the speedup using n threads

 T(k) is the elapsed time required to complete using k threads

 Ideal S(n) == n
 S(n) is normally less than n

• Sometimes much less...

 It’s not impossible for it to be greater than n

12

CSE333, Winter 2021L16: Threads

Measured Speedup on attu4
 Xeon E5-2670 v3

 12 cores, 24 threads

13

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sp
ee

du
p

Number of Threads

speedup ideal

CSE333, Winter 2021L16: Threads

Example Parallel Code Total CPU Time

14

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

To
ta

l C
PU

 T
im

e

Number of Threads

CSE333, Winter 2021L16: Threads

Threads for Concurrency

 Sometimes the code needs to do a number of largely
separate tasks, each of which is nice represented as a
single thread of control

 In some of these cases, threads need to make blocking
system calls
 If there’s only one thread, the application is completely inert

when that one thread blocks on a system call (e.g., read)

 Threads for concurrency are about making it easier to
write the program

15

CSE333, Winter 2021L16: Threads

Example Concurrent Application

16

Echo
App

stdin stdout

network
(socket)

• Main thread creates two threads
• One sits in a loop accepting

connections
• it then sits in a loop reading from

connection and writing back to
connection

• The other sits in a loop reading from
stdin and writing to stdout

• The main thread join’s the two threads
it has created, and then exits

CSE333, Winter 2021L16: Threads

Main thread code

17

bool done = false;

int main(int argc, char const *argv[])
{
int server_fd;
try
{
server_fd = make_server_socket(PORT);

}
catch (std::exception &e)
{
std::cout << e.what() << std::endl;
exit (1);

}

std::thread network_thread(accept_connection, server_fd);
std::thread keyboard_thread(read_keyboard);

network_thread.join();
close(server_fd);

keyboard_thread.join();

return 0;
}

CSE333, Winter 2021L16: Threads

Keyboard (stdin/stdout) thread code

18

void read_keyboard()
{

char buffer[1024];
while (fgets(buffer, 1023, stdin)) {

printf("stdin: %s", buffer);
if (!strcmp(buffer, "q\n"))

break;
}
done = true;
std::cout << "--- Keyboard thread exiting" << std::endl;

}

EOF from keyboard can shut
down the app.
(The app cannot be shut down
from its network connection.)

CSE333, Winter 2021L16: Threads

Network thread code (Part 1)

19

void accept_connection(int server_fd)
{

int new_socket, addrlen, valread;
struct sockaddr_in address;
char buffer[1024] = {0};

struct timeval timeout;
timeout.tv_sec = 5;
timeout.tv_usec = 0;

if (setsockopt (server_fd, SOL_SOCKET, SO_RCVTIMEO, (char *)&timeout,
sizeof(timeout)) < 0)

{
perror("setsockopt failed");
return;

}

Can’t kill this thread from another
thread, so it has to wake up from
waiting for a connection every so
often. (Every 5 seconds here.)

CSE333, Winter 2021L16: Threads

Network thread code (Part 2)

20

while(!done)
{
new_socket = accept(server_fd, (struct sockaddr *)&address,(socklen_t*)&addrlen);
if (new_socket < 0)
{
if (errno == EAGAIN || errno == EWOULDBLOCK)
{

std::cout << "Network thread continuing..." << std::endl;
continue;

}
std::cout << std::strerror(errno) << std::endl;
perror("accept failed");
return;

}
std::cout << "--- Have network connection" << std::endl;
while ((valread = read(new_socket , buffer, 1024)) > 0)
{
send(new_socket , buffer, valread , 0);
printf("network: %s", buffer);

}
close(new_socket);
std::cout << "--- Network connection closed" << std::endl;

}
std::cout << "--- Network thread exiting" << std::endl;

}

Wake up regularly to check
done flag.

This code blocks indefinitely if
connected and the other end
doesn’t send anything.
Maybe...

CSE333, Winter 2021L16: Threads

Threads for Concurrency Summary: Pro’s
 We used many threads for concurrency because it

simplified the programming model
 Each thread represented a largely independent computation

 The state of the computation (thread) was reflected “in the usual
way” – in the call stack of the thread

 The computations involved high latency operations

 We addressed the high latency operation using blocking calls
• Rather than “polling”

 Overall efficiency is good because one thread blocking doesn’t
interfere with the progress of other thread

 Have the possibility for physical parallelism (use more than one
core)

21

CSE333, Winter 2021L16: Threads

Threads for Concurrency: Con’s

 When the per-thread computations aren’t so
independent, probably have race conditions that must be
addressed
 We’ll look at this a bit in a bit

 For now, read this as “when computations aren’t entirely
independent, we need synchronization, and that is a new level of
complexity and difficult bugs”

 It’s hard to know how many threads to use
 Too many results in high thread management overhead

 Too few results in insufficient concurrency and resultant delays

22

CSE333, Winter 2021L16: Threads

An Alternative: Event-Driven Execution
 It isn’t inherent in the idea, but typically this implies using only

a single thread
 Minimal thread management overhead

 No race conditions

 Instead of one thread per blocking call (e.g., socket or file
read), a single thread waits for any of them to become
available

 Having available data is one example of “an event”
 Events can be logical/software induced – Java Observer/Observable

 A handler routine is called when an event happens

 Program execution is a succession of events firing
(asynchronously) and event handlers being invoked

23

CSE333, Winter 2021L16: Threads

An Alternative: Event-Driven Execution

 Often the code that knows how to accept event handler
registrations, wait for an event, and invoke the
appropriate handler is infrastructure
 E.g., Windows message loop, Java Observer/Observable, any

number of language runtimes

 The application is (largely) composed of a set of handlers

 C++ does not have a generally accepted event
infrastructure

 In the examples I’ll show you, I’ve built a crude one as
part of the app

24

CSE333, Winter 2021L16: Threads

Concurrent vs. Event-Driven

25

Echo
App

stdin stdout

network
(socket)

stdin stdout

network
(socket)

Event
Manager

socket
handler

file
handler

Concurrent Event-Driven

CSE333, Winter 2021L16: Threads

Event-Driven App Code: main()

26

/* Single threaded, event-driven implementation
of multiple input stream example echo app */

int main(int argc, char const *argv[])
{
try

{
listener.RegisterStream(fileno(stdin), read_file);

int server_fd = make_server_socket(PORT);
listener.RegisterStream(server_fd, accept_connection);

listener.run();
}

catch (std::exception &e)
{
std::cout << e.what() << std::endl;
exit (1);

}
return 0;

}

“listener” is the event infrastructure object

When stdin has input, call read_file()

When client connection arrives, call
accept_connection()

Okay, go into event loop (and don’t return
until it’s time to terminate execution)

CSE333, Winter 2021L16: Threads

Event-Driven App Code: file handler

27

/* Callback for reading from a file */
void read_file(int fd)
{

char buffer[1024] = {0};
/* Get FILE* from fd to use with fgets() */
FILE* in_file = fdopen(fd, "r");
fgets(buffer, 1023, in_file);
std::cout << "From file stream: " << buffer;
if (!strcmp(buffer, "q\n"))

listener.done();
}

Called by listener whenever user types something

Essential stdin functionality of app (with a bug)

Program exit logic. Will cause listener::run() to return.

CSE333, Winter 2021L16: Threads

Event-Driven App Code: socket handler

28

/* Callback for listener socket */
void accept_connection(int server_fd)
{

int new_socket, addrlen;
struct sockaddr_in address;

new_socket = accept(server_fd, (struct sockaddr *)&address,(socklen_t*)&addrlen);
if (new_socket < 0)

throw std::runtime_error("accept failed");

listener.RegisterStream(new_socket, read_socket);
}

CSE333, Winter 2021L16: Threads

Event-Driven App Code: client socket handler

29

/* Callback for reading from a connected socket */
void read_socket(int client_socket)
{
char buffer[1024] = {0};

int n_read = recv(client_socket , buffer, 1023, MSG_DONTWAIT);
if (n_read > 0)

{
send(client_socket , buffer, n_read , 0);
buffer[n_read] = '\0';
printf("From network stream: %s", buffer);

}
else if (n_read == 0)

{
listener.UnregisterStream(client_socket);

}
else if (/* n_read < 0 */ errno != EWOULDBLOCK)

{
throw std::runtime_error("Socket not ready for recv?");

}
}

CSE333, Winter 2021L16: Threads

App Code Summary

 The app is basically a set of event handlers
 There is a setup phase that registers the handlers

 Then the app sits in the event handler infrastructure calling
handlers as events happen

 Works beautifully when handling an event is independent of
everything else that has or will happen...

 Reminder: single threaded execution, so no race
conditions

30

CSE333, Winter 2021L16: Threads

Infrastructure Implementation
 select() is a somewhat deprecated call whose input is a list of

file descriptors
 select() blocks until any one (or more) of the file descriptors indicates it

“is ready”
• has input to read, and/or is capable of accepting new output to write

 select() returns an indication of which file descriptors are ready
• plus it can do more, so look at the man page if you want to know more

 The modern version is poll()

 Despite that, you’re hear the term “select loop” – that’s the
heart of the event handler infrastructure

31

CSE333, Winter 2021L16: Threads

Infrastructure Implementation

32

typedef std::function<void(int)> SLCallback;
class StreamListener {
public:
/* n_fds is the maximum number of file descriptors the listener is configured to monitor */
StreamListener(unsigned int n_fds = 10) : max_fds_(n_fds) {...}
~StreamListener();

bool RegisterStream(int fd, SLCallback event_callback, SLCallback destroy_callback=CloseFd);
bool UnregisterStream(int fd);

void run();
/* tells run to return */
void done() { ... }

private:
static void CloseFd(int fd) { close(fd); }

std::map<int, std::pair<SLCallback, SLCallback>> listener;
unsigned int max_fds_;

};

Some details have been left out to
fit this on the slide.

CSE333, Winter 2021L16: Threads

Infrastructure Implementation

33

StreamListener::~StreamListener()
{

if (poll_fds_)
delete [] poll_fds_;

/* Invoke destroy callback on registered streams */
for (auto&& [first,second] : listener)

second.second(first);
}

Free dynamically allocated memory

Invoke file descriptor destruction method callback

CSE333, Winter 2021L16: Threads

Infrastructure Implementation

34

void StreamListener::run() {
while(!done_) {

/* Convert map to array structure needed by poll() */
RepopulatePollFds();
/* Wait for something to happen... */
int rc = poll(poll_fds_, n_fds_, -1);
if (rc < 0) throw std::runtime_error("poll failed");

/* Figure out what happened */
for (unsigned int i=0; i<n_fds_; i++) {

if (poll_fds_[i].revents == 0) continue;
if (poll_fds_[i].revents == POLLIN) {

auto it = listener.find(poll_fds_[i].fd);
if (it == listener.end())
throw std::runtime_error("Got poll event on file descriptor that isn't registered");

it->second.first(it->first);
}

else if (poll_fds_[i].revents == POLLNVAL) UnregisterStream(poll_fds_[i].fd);

else std::cout << "Bad revents: " << poll_fds_[i].revents << " on " << poll_fds_[i].fd << std::endl;
}

}
}

Wait for some source to become ready

Find the ready descriptor(s) and event type

CSE333, Winter 2021L16: Threads

Accessing the Example Code

 attu:/cse/courses/cse333/21wi/public/concurrency/

 attu:/cse/courses/cse333/21wi/public/event-driven/

 Note: there are known bugs having to do with robustness
and error detection/resolution

 Make sure to include the pthread library in the build:
g++ -std=c++17 –g –Wall *.cc –l pthread

35

CSE333, Winter 2021L16: Threads

Bonus Topic: The Problem, In Real Life
(approximately)

 You order dinner delivered to your front door

 How do you know when it arrives?

 You can
 Stand at the front door and wait

 Do something else, but go to the door every once in a while and check
• If it’s not there you can go back inside, or

• If it’s not there you can just wait because you have nothing better to do

 Arrange for the delivery person to text you when your dinner arrives

 Train your dog to wait at the door for your dinner (but now you’re
waiting for the dog, so you have the same problem)
• Note: If your dog could eat your dinner for you that would solve the waiting problem

36

Key: synchronous single-threaded | asynchronous | multi-threaded

CSE333, Winter 2021L16: Threads

Long Latency Operations
 When your code calls read(), it stops executing until something has been

read (or an error has occurred or EOF has occurred or a signal is received or...)

 Why?

 It can be useful to think of long-latency operations as having two distinct
sub-operations
 start

 done

 Why?

37

CSE333, Winter 2021L16: Threads

Long Latency Operation Completion Detection
 How can the originator of the operation know when it has

completed?

 Depends on how execution is done
 Synchronous execution - the thread originating the operation doesn’t run again

until the operation finishes

 Asynchronous execution – the thread originating the operation continues
running

 Depends on how notification is done
 Synchronous notification – the initiating thread takes some action to check

whether the operation has completed

 Asynchronous notification – a method is registered to be run when completion
occurs, and then is run when completion occurs

 No notification
38

CSE333, Winter 2021L16: Threads

Procedure Call Semantics: Sync / Sync

 Synchronous Execution / Synchronous Notification
 Example: procedure call

• calling thread carries out the long latency work (procedure execution)

 Example: (blocking) read()
• operating system suspends execution of calling thread until data is

available to be read

 Continuing execution == operation has finished

 This is the simplest model for programmers

 “Remote Procedure Call” (RPC) is a(ny) network protocol
whose semantics are those of local procedure call

39

CSE333, Winter 2021L16: Threads

Polling: Async / Sync
 A invoking thread starts an operation and then goes on

executing without waiting for operation to complete

 The operation sets some state (e.g., a variable) to indicate
when it has completed

 The invoking thread checks the state variable whenever it feels
like
 Could be in a tight “polling loop” (doing nothing but checking)

 Could check “every once in a while” (every 5 msec., every 10 sec., once
per day, ...)

 Polling mostly make sense for operations whose latency (time
to completion) is predictable

40

CSE333, Winter 2021L16: Threads

Polling: Example
 First of all, you should feel very uneasy if you find yourself

writing code that does polling!
 In most circumstances, there’s some better (more efficient/simpler)

solution

 Example: sockets
 you can set a network socket to be “non-blocking”

 When you perform a read() operation on it, you get an answer back
immediately
• The answer might be the data you wanted

• Otherwise the answer is an error (EWOULDBLOCK)

• Either way, your thread continues running and can do whatever you want

41

CSE333, Winter 2021L16: Threads

Join: Async / Sync

 Threads:
 create a thread (as a C++ std::thread object, say, th), which causes

it to start running

 th.join() suspends the calling thread until thread th terminates

 Processes
 fork() a process. You get back the new (child) process’s process id

(pid)

 wait(pid) to wait for it to terminate

 The difference between
• emacs myfile.txt

• emacs myfile.txt &

42

CSE333, Winter 2021L16: Threads

Async / synch

 When you start some operation asynchronously, there
will almost aways be two things you can do to check on its
completion status
 “wait” (or some other name): suspend my execution until the

operation has finished

 “test” (or some other name): return an indication of whether or
not it has finished, but don’t block me no matter what

43

CSE333, Winter 2021L16: Threads

Example using C++ futures/async

 Synch/Synch
 procedure call

 Asynch / Synch
 wait

 poll

 Plus bonus features (and C++ qualitative review)

44

CSE333, Winter 2021L16: Threads

Example App

45

int delay_sub(args)
{

<do some work that
takes a while>

return value;
}

int main(int argc, char *argv[])
{

<start delay_sub(args);
<do no work or do some work>
<obtain result from delay_sub()>

}

Execution Scenarios:
• procedure call
• async / sync where main waits
• async / sync where result is

ready when main asks for it
• polling

C++ features
• std::async, std::future
• std::this_thread
• time – std::chrono
• function object
• method chaining
• friend function

CSE333, Winter 2021L16: Threads

A Design Issue

 I want to print log messages indicating what each
“thread” is doing

 I want to print elapsed time with each message

 I want syntax something like this:
LOG() << "Main thread start operation(0, 1, 2)" << std::endl;
to produce output like this:
0.0000410800 -- Main thread start operation(0, 1, 2)

46

CSE333, Winter 2021L16: Threads

IntervalTimer Utility Class

47

class IntervalTimer
{
public:
IntervalTimer() { reset(); }
IntervalTimer& reset()

{
start_ = std::chrono::steady_clock::now();
return *this;

}
private:
std::chrono::time_point<std::chrono::steady_clock> start_;
friend std::ostream& operator<<(std::ostream&, IntervalTimer&);

};

std::ostream& operator<<(std::ostream& os, IntervalTimer &timer)
{
std::chrono::duration<float> elapsed_time = std::chrono::steady_clock::now() - timer.start_;
os << elapsed_time.count();
return os;

}

CSE333, Winter 2021L16: Threads

Logger Utility Class

48

class Logger
{
public:
Logger(std::ostream& os) : os_(os) {}
std::ostream& operator()()

{
os_ << std::fixed << std::setprecision(10) << timer_ << " -- ";
return os_;

}
Logger& reset()

{
timer_.reset();
return *this;

}
std::ostream& ostream()

{
return os_;

}
private:
std::ostream& os_;
IntervalTimer timer_;

};

CSE333, Winter 2021L16: Threads

delay_sub()

49

int delay_sub(int x, int y, int z)
{
LOG() << "delay_sub thread (" << std::this_thread::get_id() << ") sleeping for 5 seconds" << std::endl;
std::this_thread::sleep_for(std::chrono::seconds(5)); // never do this!
LOG() << "delay_sub thread awake" << std::endl;
if (x+y+z < 0)

throw std::runtime_error("Result is negative!");
return x+y+z;

}

CSE333, Winter 2021L16: Threads

Main: procedure call

50

LOG.reset()() << "Procedure call test" << std::endl;
LOG() << "Main thread (" << std::this_thread::get_id() << ") start operation(0, 1, 2)" << std::endl;
wait_val = delay_sub(0, 0, 0);
LOG() << "Main thread got value: " << wait_val << std::endl;

0.0000045240 -- Procedure call test
0.0000432160 -- Main thread (140487854065472) start operation(0, 1, 2)
0.0000488950 -- delay_sub thread (140487854065472) sleeping for 5 seconds
5.0001621246 -- delay_sub thread awake
5.0001931190 -- Main thread got value: 0

CSE333, Winter 2021L16: Threads

Main: async / synch (wait)

51

LOG.ostream() << std::endl;
LOG.reset()() << "First wait test" << std::endl;
LOG() << "Main thread (" << std::this_thread::get_id() << ") start operation(0, 1, 2)" << std::endl;
std::future<int> v1 = std::async(&delay_sub, 0, 1, 2);
LOG() << "Main thread sleeping for 2 seconds" << std::endl;
std::this_thread::sleep_for(std::chrono::seconds(2));
LOG() << "Main thread get()" << std::endl;
wait_val = v1.get();
LOG() << "Main thread got value: " << wait_val << std::endl;

0.0000001100 -- First wait test
0.0000050920 -- Main thread (140487854065472) start operation(0, 1, 2)
0.0002516000 -- Main thread sleeping for 2 seconds
0.0002674270 -- delay_sub thread (140487836149504) sleeping for 5 seconds
2.0003676414 -- Main thread get()
5.0004024506 -- delay_sub thread awake
5.0005426407 -- Main thread got value: 3

CSE333, Winter 2021L16: Threads

Main: async / sync (wait) Part 2

52

LOG.ostream() << std::endl;
LOG.reset()() << "Second wait test" << std::endl;
LOG() << "Main thread (" << std::this_thread::get_id() << ") start operation(3, 4, 5)" << std::endl;
auto v2 = std::async(delay_sub, 3, 4, 5); // this is an easier way to declare the std::future
LOG() << "Main thread sleeping for 9 seconds" << std::endl;
std::this_thread::sleep_for(std::chrono::seconds(9));
LOG() << "Main thread get()" << std::endl;
wait_val = v2.get();
LOG() << "Main thread got value: " << wait_val << std::endl;

0.0000001000 -- Second wait test
0.0000039960 -- Main thread (140487854065472) start operation(3, 4, 5)
0.0000397140 -- Main thread sleeping for 9 seconds
0.0000452840 -- delay_sub thread (140487836149504) sleeping for 5 seconds
5.0001139641 -- delay_sub thread awake
9.0001583099 -- Main thread get()
9.0001926422 -- Main thread got value: 12

CSE333, Winter 2021L16: Threads

Main: async / sync (polling)

53

LOG.ostream() << std:: endl;
LOG.reset()() << "Polling test" << std::endl;
LOG() << "Main thread (" << std::this_thread::get_id() << ") start operation(6, 7, 8)" << std::endl;
auto v3 = std::async(delay_sub, 6, 7, 8);
while(1) {

auto status = v3.wait_for(std::chrono::seconds(0));
if (status == std::future_status::ready)

break;
LOG() << "Main thread sleeping for four seconds" << std::endl;
std::this_thread::sleep_for(std::chrono::seconds(4));

}
wait_val = v3.get();
LOG() << "Main thread got value: " << wait_val << std::endl;

0.0000000800 -- Polling test
0.0000031500 -- Main thread (140487854065472) start operation(6, 7, 8)
0.0000432180 -- Main thread sleeping for four seconds
0.0000984170 -- delay_sub thread (140487836149504) sleeping for 5 seconds
4.0001163483 -- Main thread sleeping for four seconds
5.0001783371 -- delay_sub thread awake
8.0002136230 -- Main thread got value: 21

CSE333, Winter 2021L16: Threads

C++ bonus material: delayed exception

54

LOG.ostream() << std::endl;
LOG.reset()() << "Exception test" << std::endl;
try {

LOG() << "Main thread (" << std::this_thread::get_id() << ") start operations(-1, -2, -3)" << std::endl;
v3 = std::async(delay_sub, -1, -2, -3);
LOG() << "Main thread sleeping for eight seconds" << std::endl;
std::this_thread::sleep_for(std::chrono::seconds(8));
int result = v3.get();
LOG() << "Exception test got result " << result << std::endl;

}
catch (std::exception &e) {

LOG() << "Exception: " << e.what() << std::endl;
}

0.0000000800 -- Exception test
0.0000022680 -- Main thread (140487854065472) start operations(-1, -2, -3)
0.0000613190 -- Main thread sleeping for eight seconds
0.0000692290 -- delay_sub thread (140487836149504) sleeping for 5 seconds
5.0001440048 -- delay_sub thread awake
8.0001573563 -- Exception: Result is negative!

CSE333, Winter 2021L16: Threads

Computing Bonus Material: Signals
 What about async execution/ async notification?
 What does it even mean?

• Event-based programming (sort of)

 Signals
 Process-level event handlers

 The “events” are integers, most of which have well-known semantics
• For instance, ctrl-C is a signal (SIGINT == 2)

 A process registers a signal handler method for a signal

 When the signal is sent/received, that method is invoked

 The signals I’ll show allow one process to signal another process

55

CSE333, Winter 2021L16: Threads

signal.cc

56

int counter = 0;

void signal_handler(int signal)
{
std::cout << std::endl

<< "Thread " << std::this_thread::get_id()
<< " caught signal: " << signal << std::endl
<< "counter = " << counter << std::endl;

}

int main()
{
std::cout << "Process id: " << getpid() << std::endl;

// Install a signal handler
std::cout << "Installing handler for " << SIGUSR1 << std::endl;
std::signal(SIGUSR1, signal_handler);

std::cout << "Thread " << std::this_thread::get_id() << " going into infinite loop." << std::endl;
for (unsigned int i=0; i>=0; i++) { counter++; }

return 0;
}

Register handler method for SIGUSR1 signal

CSE333, Winter 2021L16: Threads

Example Execution

57

attu8> ./a.out
Process id: 801807
Installing handler for 10
Thread 1 going into infinite loop.

Thread 1 caught signal: 10
counter = 1054351402

Thread 1 caught signal: 10
counter = -592577485

Thread 1 caught signal: 10
counter = 155031883

attu8>

attu8> kill -SIGUSR1 801807
attu8> kill -SIGUSR1 801807
attu8> kill -SIGUSR1 801807
attu8> kill -SIGINT 801807

One Shell

Another Shell

CSE333, Winter 2021L16: Threads

Accessing the Example Code

 attu:/cse/courses/cse333/21wi/public/concurrency/

 attu:/cse/courses/cse333/21wi/public/event-driven/

 attu:/cse/courses/cse333/21wi/public/async/

 attu:/cse/courses/cse333/21wi/public/signal/

 Note: there are known bugs having to do with robustness
and error detection/resolution

 Make sure to include the pthread library in the build:
g++ -std=c++17 –g –Wall *.cc –l pthread

58

