
CSE333, Winter 2021L15: Networking Intro

Introduction to Networking
CSE 333 Winter 2021
Introduction to Networking
CSE 333 Winter 2021

Instructor: John Zahorjan

Teaching Assistants:

Matthew Arnold Nonthakit Chaiwong Jacob Cohen

Elizabeth Haker Henry Hung Chase Lee

Leo Liao Tim Mandzyuk Benjamin Shmidt

Guramrit Singh

CSE333, Winter 2021L15: Networking Intro

Intro to Networking
 How the Internet is Designed / Works

 CSE 461

 Problems in Writing Distributed Programs and Their Solutions
 CSE 452

 This Course
 Experience with the simplest, most straightforward distributed application

 “Client/Server” when not much can go wrong

 I’m going to take a lot of liberty simplifying things here

2

CSE333, Winter 2021L15: Networking Intro

First, Some Demos (Then, Some Explanation)

 ifconfig (Linux) to list network addresses

 nc utility launched as server and as client

 nc server and browser as client

 HTTP

 persistent connection

3

CSE333, Winter 2021L15: Networking Intro

IP (Internet Protocol)
 IP carries data from one IP address (network

adapter/machine) to another
 From one OS to another

4

Internet
Apps os Appsos

IP Address IP Address

CSE333, Winter 2021L15: Networking Intro

Sockets / Ports

 Internet packets carry IP address and port number

 IP address is used to name host to which packet is delivered

 Ports are used by destination OS to determine to which
socket’s buffer to add incoming data
 Sockets are bound to ports

5

os

Apps Sockets
read()

write()

IP &
Port

App
Data

Internet Packet

read()

write()

Port 80

Port 5555

CSE333, Winter 2021L15: Networking Intro

TCP (Stream) Sockets

 TCP is a reliable, stream protocol

 stream: it’s a linear sequence of bytes, just like a file

 reliable: bytes read are in the same order as they were
sent
 IF they arrive

6

Internet

App AppSocketSocket

CSE333, Winter 2021L15: Networking Intro

Client / Server Architecture

 The server is always running and has bound a socket to a
“well known port”
 Example: web server sockets are usually bound to port 80

 The client comes up, establishes a TCP connection to the
server’s socket, and sends requests

7

CSE333, Winter 2021L15: Networking Intro

Server Socket Setup

8

server socket1. Server creates a socket OS

server
socket
port 802. Server binds socket to a port OS

IP:80 ...

server
socket
port 803. Server invokes listen() OS

IP:80 ...

server
socket
port 80

4. Server thread blocks on
accept()

OS
IP:80 ...

CSE333, Winter 2021L15: Networking Intro

Server Socket Setup

9

server
socket
port 80

5. Client connects OS
IP:80 “connect”

server
socket
port 80

6. OS creates new socket,
connects remote client
streams to it, and returns
it (from accept())

OS

socket
port 3425

7. The new socket is “connected” to the client’s socket on their machine.
Writing to the socket sends data that can be read by the client.
Reading from the socket reads data the client has sent, or blocks.

The server ends up with a distinct socket for each client connection.
More than one client can be connected at the same time.

CSE333, Winter 2021L15: Networking Intro

Request / Response Application Protocol

 The applications send messages to each other

 The rules about what messages can be/must be sent, how
to format them, are set by the application level protocol

 Request/Response Protocol
 Simple two message exchange

• Client sends a request to the server

• Server responds with normal response or an error indication

 Similiar to procedure call

10

CSE333, Winter 2021L15: Networking Intro

Let’s See All This in Action

 We’ll do this live, but what we’re doing is on the following
slides

11

CSE333, Winter 2021L15: Networking Intro

ifconfig: attu2

12

attu2> ifconfig
eno1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

inet 128.208.1.138 netmask 255.255.255.0 broadcast 128.208.1.255
inet6 fe80::46a8:42ff:fe4a:76a8 prefixlen 64 scopeid 0x20<link>
inet6 2607:4000:200:10::8a prefixlen 64 scopeid 0x0<global>
ether 44:a8:42:4a:76:a8 txqueuelen 1000 (Ethernet)
RX packets 9787460872 bytes 11437771351898 (10.4 TiB)
RX errors 0 dropped 41 overruns 0 frame 0
TX packets 5065166238 bytes 3366916108204 (3.0 TiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
device interrupt 18

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10<host>
loop txqueuelen 1000 (Local Loopback)
RX packets 115725209 bytes 64235696673 (59.8 GiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 115725209 bytes 64235696673 (59.8 GiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

CSE333, Winter 2021L15: Networking Intro

nc utility as client and server

13

attu2> nc attu7.cs.washington.edu 5566
one
two
three
attu2>

attu7> nc -l 5566
one
two
three
attu7>

1. start server 2. start client

3. send stream of data

4. server reads data

CSE333, Winter 2021L15: Networking Intro

nc as server, browser as client

14

attu7> nc -l 5566

GET /one/two/three/ HTTP/1.1
Host: attu7.cs.washington.edu:5566
Connection: keep-alive
DNT: 1
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/88.0.4324.190 Safari/537.36
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;
q=0.8,application/signed-exchange;v=b3;q=0.9
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9

^C
attu7>

CSE333, Winter 2021L15: Networking Intro

HTTP Protocol

15

GET /one/two/three/ HTTP/1.1
Host: attu7.cs.washington.edu:5566
Connection: keep-alive
DNT: 1
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/88.0.4324.190 Safari/537.36
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,imag
e/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9

Encoding: text
Framing: \r\n to end each line

empty line (\r\n\r\n) to end request

\r\n

\r\n\r\n

CSE333, Winter 2021L15: Networking Intro

HTTP Request (Sent by Chrome)

16

GET /one/two/three/ HTTP/1.1
Host: attu7.cs.washington.edu:5566
Connection: keep-alive
DNT: 1
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/88.0.4324.190 Safari/537.36
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,imag
e/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9

The first line is the request line.
All following lines are key: value

CSE333, Winter 2021L15: Networking Intro

HTTP Response (Sent by courses.cs)

17

HTTP/1.1 302 Found
Date: Sun, 28 Feb 2021 22:16:05 GMT
Server: Apache/2.4.6 (CentOS)
Expires: Wed, 01 Jan 1997 12:00:00 GMT
Cache-Control: private,no-store,no-cache,max-age=0
Location: https://courses.cs.washington.edu/courses/cse333/21wi/
Content-Length: 328
Connection: close
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>302 Found</title>
</head><body>
<h1>Found</h1>
<p>The document has moved here.</p>
<hr>
<address>Apache/2.4.6 (CentOS) Server at courses.cs.washington.edu Port 80</address>
</body></html>

HTTP response header

Empty line sentinel

HTML data

CSE333, Winter 2021L15: Networking Intro

Persistent Connections
 The client can request that the server not close the TCP

connection when it responds to the request
 Because the client anticipates sending another request to the same

server

 Connection: keep-alive
 in HTTP request and response headers

 Pipelined request example:

18

GET / HTTP/1.1
Host: www.cs.washington.edu:80
Connection: keep-alive

GET / HTTP/1.1
Host: www.cs.washington.edu:80
Connection: keep-alive

End of request sentinels

CSE333, Winter 2021L15: Networking Intro

Okay, Now Some Networking Background

 This is not CSE 461...

19

CSE333, Winter 2021L15: Networking Intro

Network Concepts: Local Area Network

20

Hosts

Network Adapters

Local Area Network

• Hosts
• Computers, each running an OS

• Network Adapters
• Ethernet card, Wifi card, cellular interface
• Converts bits in memory into analog signals on the local area network

when transmitting, and analog signals into bits when receiving

• Local Area Network
• Wire or fiber or radio waves
• Data sent by any the adapter of any host is received by every adapter

on the local network

CSE333, Winter 2021L15: Networking Intro

Network Concepts: LAN Address

21

Hosts

Network Adapters

Local Area Network

• Suppose one host wants to tell another host to power down
• All the hosts have previously agreed that if they hear the bit

pattern 0101010101010101 it represents a request to power
down

• How can the green host ask only the orange host to power down?
• The bits of the message are preceded by bits representing the name

of the intended recipient
• Orange 0101010101010101
• If you’re name isn’t orange, you ignore the message

CSE333, Winter 2021L15: Networking Intro

Network Concepts: A Network

22

Hosts

Network Adapters

Local Area Network

A LAN is sometimes referred to as “a network.”

CSE333, Winter 2021L15: Networking Intro

Network Concepts: Internet

23

Internet

CSE333, Winter 2021L15: Networking Intro

Internet Data Delivery

 When the sender of some data puts that data on its LAN,
the receiver won’t hear it (unless it’s on the same LAN)

 The Internet is responsible for routing the bits from the
source network to the destination network
 From the source LAN to the LAN the receiver is on

 Two possible approaches to routing:
1. Send every message to every LAN, thus ensuring it gets on

receiver’s LAN and is heard by receiver

2. Send it to just one LAN, the receiver’s LAN, along some directed
path

24

CSE333, Winter 2021L15: Networking Intro

Network Concepts: Internet

25

Internet

• Sender needs to name
receiver

• MAC addresses aren’t
very helpful because
they’re essentially
random

• Create a new
namespace with the
property that “similar
names are in the same
place”

• IP addresses

CSE333, Winter 2021L15: Networking Intro

IP Addresses

26

Internet

• IP addresses are
(usually) global in scope

• They name adapters,
which means they
name hosts

• IPv4 addresses are 32
bits
• 4G names

• IPv6 addresses are 128
bits
• ∞ names

128.208.1.137

128.208.1.138

128.208.1.139

CSE333, Winter 2021L15: Networking Intro

Network Connections

 IP addresses name hosts, but we want to communicate
from one host to another
 We want to communicate from an application running on one

host to an application running on another host

 Ports / Sockets
 Internet messages carry an IP address: host identifier

 They also carry a port number (a small int)

 The operating system maintains a map from port numbers at its IP
address and running applications on its system
• Sockets

27

CSE333, Winter 2021L15: Networking Intro

Connections and Demultiplexing

 Demultiplexing is taking data arriving from one source
and moving it forward to one of several next steps

 TCP demultiplexes using
(TCP, source IP, source port, dest IP, dest port)

as the key

28

network data

OS
sockets

CSE333, Winter 2021L15: Networking Intro

A Bit of Context Without Context: SO_REUSEADDR
 When a TCP socket is closed, it goes into a TIMED_WAIT state
 It is still there for a little while related to how long undelivered packets

might still be “in flight”

 By being there, it prevents a new socket from being created and binding
to the same address:port

 That prevents confusion where data sent to the now closed connection
arrives late and is demultiplexed to the new socket’s incoming buffer

 This can mean that when you terminate your server and then
“immediately” restart it, it fails
 It fails because it tries to acquire the same IP:port as it just had, and that

address is being kept busy exactly so you can’t acquire it again for a
while

29

CSE333, Winter 2021L15: Networking Intro

A Bit of Context Without Context: SO_REUSEADDR

30

/* Set a socket option to enable re-use of the port number as
soon as the server exits. ("man setsockopt“ and “man 7 socket”) */

int optval = 1;
if (setsockopt(listen_sock_fd_, SOL_SOCKET, SO_REUSEADDR, &optval, sizeof(optval))
{

perror(“setsockpt(SO_REUSEADDR) failed”);
exit(1);

}

CSE333, Winter 2021L15: Networking Intro

Next...

 What’s wrong with this pseudo-code?
 server_sock = createServerSock();

while(1)
{

client_sock = server_sock.accept();
while (request = read_request(client_sock))
{

process_request(request);
}

}

31

