WA UNIVERSITY of WASHINGTON

L13: Memory Management

CSE333, Winter 2021

Memory Management / C++ Smart Pointers
CSE 333 Winter 2021

Instructor:  John Zahorjan

Teaching Assistants:

Matthew Arnold Nonthakit Chaiwong Jacob Cohen
Elizabeth Haker Henry Hung Chase Lee
Leo Liao Tim Mandzyuk Benjamin Shmidt

Guramrit Singh



WA UNIVERSITY of WASHINGTON L13: Memory Management

Lecture Outline

L)

0’0

>

o0

L)

0

>

o0

L)

o0

Overview of Java Garbage Collection
" Why doesn’t C++ do that?

An Alternative: Reference counting
Dynamically Allocated Memory Issues
ad hoc RAIl Memory Allocation in C++

C++ Standard Library Support
" std::unique ptr

" std::shared ptr

" std::weak ptr

CSE333, Winter 2021



WA UNIVERSITY of WASHINGTON L13: Memory Management CSE333, Winter 2021

Garbage

+» Dynamically allocated memory must eventually be
deleted, or else you can run out
= Even before you run out, you can run slower and slower...
- Memory must not be deleted before it becomes
“garbage”

" Garbage is memory that can never be accessed again

>

L)

L)

% pMyObj = new Obj(“one”);
pMyObj = new Obj(“two”);
The memory allocated in the first statement is garbage after
the second, because it cannot be referenced



WA UNIVERSITY of WASHINGTON L13: Memory Management CSE333, Winter 2021

Automatic Garbage Collection

+» Use of managed memory (e.g., malloc()/free()) is the
source of many bugs and a lot of programming pain

» A language with automatic garbage collection relieves the
programmer of the burden of coding when free’s should

take place
« Yeah!

+ Let’s look at (automatic) garbage collection...



WA UNIVERSITY of WASHINGTON L13: Memory Management CSE333, Winter 2021

Gabage Collection (GC)

+» The goal of garbage collection is to not run out of dynamically
allocatable memory (due to garbage)

" |ncludes unable to allocate a big enough piece due to fragmentation

+» When should garbage be collected?
1. Immediately, when it turns into garbage?
2. When you run out of allocatable memory (or just before)?
3. Everyoncein a while?
+» There’s a trade-off among
" On-going overhead costs

= Latency (dead time) while GC takes place
" Getting it right...



WA UNIVERSITY of WASHINGTON L13: Memory Management CSE333, Winter 2021

Mark-and-Sweep GC

« Java doesn’t define what GC method must be used
" There are many

" These slides try to present a general sense

+» Mark-and-Sweep
= Mark: find all accessible memory

= Sweep: move the accessible memory into a contiguous region,
leaving behind continguous empty space



W UNIVERSITY of WASHINGTON L13: Memory Management CSE333, Winter 2021

Mark-and-Sweep

Hea

Stack
pe “Mark” to avoid going around
cycles forever.
main ol
(Marked traversal has application
' outside of GC in processing graphs
that may have loops.)
subl
sub2 ol

The blank portions are not
currently in use:
either free or garbage




W UNIVERSITY of WASHINGTON L13: Memory Management CSE333, Winter 2021

Mark-and-Sweep

Hea

Stack
i I haven’t tried to sweep in a logical
order, so don’t read anything into

main o the order

¢

d
subl
sub2 <




W UNIVERSITY of WASHINGTON L13: Memory Management CSE333, Winter 2021

Mark-and-Sweep

Hea

Stack
L The objects in a cycle become
garbage when the root pointer is
main o over-written.
d They’ll be collected next time GC is
run.
subl 4
sub2 <




W UNIVERSITY of WASHINGTON L13: Memory Management CSE333, Winter 2021

Why Doesn’t C++ Do Mark-and-Sweep GC?

Heap

Stack
o
main ol
¢
subl v’
sub2 ol

10



W UNIVERSITY of WASHINGTON L13: Memory Management CSE333, Winter 2021

C++ Can’t Mark-and-Sweep

Heap

Stack  Contrary to the goal of going
faster than humanly possible,

plus...

main
* [t can’t identify root pointers
* Pointers can masquerade
as int’s
* int’s can masquerade as
pointers
* No runtime information
about “type”

subl

sub2

11



WA UNIVERSITY of WASHINGTON

L13: Memory Management

CSE333, Winter 2021

An Alternative GC: Reference Counting

main

subl

sub?

Stack

Count the number of pointers to each
hunk of memory
Increment count when a new pointer is
created
Decrement when a pointer is “lost”

* Assign a new value to the

pointer

Free if the count reaches zero

12



W UNIVERSITY of WASHINGTON L13: Memory Management CSE333, Winter 2021

Reference Counting Failure

Stack
[ 4
main -
¢ }
Cycles in the graph are
subl Y a problem!
sub2 <

13



WA UNIVERSITY of WASHINGTON L13: Memory Management CSE333, Winter 2021

Reference Counting

+ Pro’s
"= Lowish overhead
- You’re not moving huge hunks of memory around

" Garbage collected as soon as it become garbage (sort of)

= Typically low latency per GC event

Okay, could be slow if you’re cascading deletion of an enormous linked list,
but that’s part of the cost of that data structure

— (i.e., use something else if it bother you)

+» Con’s
= Space overhead, possibly (if objects are small)

= Doesn’t always work

14



WA UNIVERSITY of WASHINGTON L13: Memory Management CSE333, Winter 2021

C++ and Memory Management

« The original approach is “just get it right” — debug until you do
® Can be hard to get it right
® Run valgrind, hope your tests will provoke a leak if one is exists, and then fix it

" |n very dynamic situations, you end up implementing ref counting

+ Problems that can arise if you get it wrong

" Memory leaks
" Double free’s

= Dangling pointers (multiple pointers to one block of memory and not all are
reset when the memory is freed)

+ We need help!

15



WA UNIVERSITY of WASHINGTON

L13: Memory Management

RAIl Idiom to the Rescue

+ RAIl —resource acquisition is initialization

template <class T>
class Ptr {
public:
Ptr() { ptr_= new T, }
~Ptr() { if ( ptr_ ) delete ptr_; }
T & operator*() { return *ptr_; }
private:
T * ptr_;
5

CSE333, Winter 2021

16



WA UNIVERSITY of WASHINGTON

RAII

template <class T>
class Ptr {
public:
Ptr() { ptr_= newT; }
~Ptr() { if ( ptr_ ) delete ptr_; }
T & operator*() { return *ptr_; }
private:
T * ptr_;
Iy

void sub(int n)

{
Ptr<int> pl;
*pl=n;
sub2(pl);

}

L13: Memory Management

VS.

void otherSub(int n)

{
int * pl = new int;
*pl=n;
otherSub2(pl);
delete pl;

}

Q: Is there any difference?

A: Yes.

Both should be checking return code from new, but ignore that...

CSE333, Winter 2021

17



W UNIVERSITY of WASHINGTON L13: Memory Management CSE333, Winter 2021

RAIIl - Yes!

void sub(int n) void otherSub(int n)
{ {

. int * nl = e
Ptr<int> pl: Q: Is there any difference? '*nt p'_ new int;
pl=n; A: Yes. pl=n;
sub2(pl); otherSub2(pl);

} delete pl;
}

Suppose an exception occurs while executing sub2/otherSub?...

Both should be checking return code from new, but ignore that...

18



WA UNIVERSITY of WASHINGTON

Limitations of Our Crude RAIl Attempt

template <class T>
class Ptr {
public:
Ptr() { ptr_= newT;}
~Ptr() { if ( ptr_ ) delete ptr_; }

T & operator*() { return *ptr_; }
private:

T* ptr_;
|5

What’s wrong with this code?

L13: Memory Management

void sub(Ptr<int> p) {
}

{
Ptr<int> pint;
Ptr<int> pOtherint;

*pint = 4;
pOtherint = pint;

sub(plnt);
int * rawPtr = &*plint;

return O;

}

int main(int argc, char *argv|])

CSE333, Winter 2021

19



WA UNIVERSITY of WASHINGTON

L13: Memory Management

CSE333, Winter 2021

Limitations of Our Crude RAIl Attempt

template <class T>
class Ptr {
public:
Ptr() { ptr_= newT;}
~Ptr() { if ( ptr_ ) delete ptr_; }

T & operator*() { return *ptr_; }
private:

T* ptr_;
|5

void sub(Ptr<int> p) {
}

int main(int argc, char *argv|])
{

Ptr<int> pint;

Ptr<int> pOtherint;

*pint = 4;
pOtherint = pint; <

sub(pint);

int * rawPtr = &*plint;

return O;

} <

Memory leak

Dangling Pointer

Double Free

20



WA UNIVERSITY of WASHINGTON L13: Memory Management CSE333, Winter 2021

Overcoming the Flaws

+» Sometimes scope isn’t sufficiently flexible to determine
lifetime

" |et’s use reference counting of the thing pointed at
+» Sometimes scope is exactly the right lifetime...

+» Sometimes copying pointers is a problem...

" |et’s override (or maybe disable) copy construction and
assignment

+~ The STL provides implementations that do all this for us!

21



W UNIVERSITY of WASHINGTON L13: Memory Management CSE333, Winter 2021

C++ Smart Pointers — std::unique_ptr<T>

% std::unique_ptr<int> OnlyPtr(new int(5)); // or...
auto OnlyPtr = std::make_unique<int>(5); //since C++14
std::cout << *OnlyPtr << std::endl;

= For the special case is when there should be only a single (unique)
pointer to the allocated memory

= std::unique_ptr<T> deletes copy constructor and (normal) assignment

= |t (of course) deletes the allocated memory on destruction

+ There are methods to
= Cause deletion now (and set unique_ptr to nullptr)
= Produce the pointer as a regular pointer (!)

= Other bad ideas (and some good ones)

22



W UNIVERSITY of WASHINGTON L13: Memory Management CSE333, Winter 2021

First (Special) Case: There Can Be Only One Ptr

| can write correct code if there’s only one pointer to each hunk of dynamically
allocated memory and it’s freed when that pointer is lost

* No leaks

* No double frees

* No dangling pointers

Issue: | have to make sure there’s never more than one copy of the pointer

Pl | new’ed

memory

P2

P2 =P1; //Iwant this to be a compile time error!

23



WA UNIVERSITY of WASHINGTON

L13: Memory Management

CSE333, Winter 2021

Special Case: There Can Be Only One Ptr

P1

\b

nhew’ed
memory

std::unique_ptr<int> P2(P1.release());

U

P1

P2

—

nhew’ed
memory

24



WA UNIVERSITY of WASHINGTON L13: Memory Management

More General Case — std::shared_ptr<T>

+ std::shared ptr<T>implements reference counting

® Can have any number of pointers to dynamically allocated
memory

" Copy and assignment operations are overloaded
- A=B;
— Increment the reference count of memory B is pointing at, if any

— Decrement the reference count of memory A was pointing at, if any

std::shared_ptr<int> FirstPtr(new int(5)); // don’t do this...
auto SecondPtr = std::make_shared<int>(10); //since C++11
SecondPtr = FirstPtr; // memory holding 10 is deleted

FirstPtr = nullptr; // no delete takes place

25

CSE333, Winter 2021



WA UNIVERSITY of WASHINGTON L13: Memory Management

std::shared_ptr issue...

+ |f there can be many pointers pointing to the same
memory, how can | know when to delete it
" | can’t search for pointers
- Because it’s too expensive and because | can’t

= Keeping a list of pointers associated with the memory would be
very expensive

- Have to update potentially two such lists each time a pointer gets a
new value

+ Solution: reference counting

" Don’t keep a list of pointers pointing to the memory object, just
keep track of how many of them there are

26

CSE333, Winter 2021



WA UNIVERSITY of WASHINGTON L13: Memory Management CSE333, Winter 2021

Reference Counting

\/
0’0

/
0’0

std::shared_ptris a pointer object

The reference count applies to the thing it points at, not
to the pointer

So, we can’t allocate memory for the reference count in
the shared ptr object

" And we can’t allocate it in the object pointed to (in part because
there’s no universal base class for all C++ objects)

Pl \ > new’ed
— memory
2+

27



WA UNIVERSITY of WASHINGTON L13: Memory Management CSE333, Winter 2021

std::weak_ptr

+ Reference counting has the problem that isolated cycles
are never deleted

head ////)

G
;

head

28



WA UNIVERSITY of WASHINGTON L13: Memory Management CSE333, Winter 2021

std::weak_ptr

+~ A weak_ptris a pointer that doesn’t contribute to the
reference count

/7 !
head . S

I,/’—- I’/”_
[ 3 ) » J
head / N / 4

29



CSE333, Winter 2021

WA UNIVERSITY of WASHINGTON L13: Memory Management

std::weak_ptr Issue?

shared_ptr Dynamically
Allocated
weak ptr - ¥ memory Refcnt=1

shared_ptr = nullptr;

Because weak_ptr’s don’t contribute
to reference count, what they’re
pointing to can be deleted.

shared ptr
Can you afford to find all weak_ptr’s
weak ptr |- pointing to the object and set them to
nullptr?

30



WA UNIVERSITY of WASHINGTON L13: Memory Management CSE333, Winter 2021

weak_ptr Issue?

shared ptr — 1 Dynamically
Allocated
weak ptr |- > 1 memory

shared_ptr = nullptr;

if ( weak_ptr.expired() )
weak_ptr.reset();

S h d rEd pt r 0 Explicit test of validity

nullptr
weak ptr |- > 1 auto new_shared = weak_ptr.lock();

new_shared is a shared_ptr that is
either nullptr or not

31



WA UNIVERSITY of WASHINGTON L13: Memory Management CSE333, Winter 2021

Summary
%+ Never use raw (C style) pointers
" Use smart pointers
% Never use new()
= Use make_uniqgue<T> and make_ shared<T> to construct pointers
+ Never use delete

= Use reset(), when needed

% There can be complications...

" unique_ptr, in particular, has some unexpected interactions
- Stand by for the next module

32



WA UNIVERSITY of WASHINGTON L13: Memory Management

CSE333, Winter 2021

Bonus Slide

+» The actual Java garbage collection techniques use
multiple regions of memory to perform mark-and-sweep
« The motivation and use is similar to solutions to other
memory management problems
= E.g., managing virtual memory in operating systems
+ |f you're at all interested, | think you would find it fun to
do some reading about it
" Maybe with a friend

33



