
CSE333, Winter 2021L13: Memory Management

Memory Management / C++ Smart Pointers
CSE 333 Winter 2021
Memory Management / C++ Smart Pointers
CSE 333 Winter 2021

Instructor: John Zahorjan

Teaching Assistants:

Matthew Arnold Nonthakit Chaiwong Jacob Cohen

Elizabeth Haker Henry Hung Chase Lee

Leo Liao Tim Mandzyuk Benjamin Shmidt

Guramrit Singh

CSE333, Winter 2021L13: Memory Management

Lecture Outline
 Overview of Java Garbage Collection
 Why doesn’t C++ do that?

 An Alternative: Reference counting

 Dynamically Allocated Memory Issues

 ad hoc RAII Memory Allocation in C++

 C++ Standard Library Support
 std::unique_ptr

 std::shared_ptr

 std::weak_ptr

2

CSE333, Winter 2021L13: Memory Management

Garbage

 Dynamically allocated memory must eventually be
deleted, or else you can run out
 Even before you run out, you can run slower and slower…

 Memory must not be deleted before it becomes
“garbage”
 Garbage is memory that can never be accessed again

 pMyObj = new Obj(“one”);
pMyObj = new Obj(“two”);
The memory allocated in the first statement is garbage after
the second, because it cannot be referenced

3

CSE333, Winter 2021L13: Memory Management

Automatic Garbage Collection

 Use of managed memory (e.g., malloc()/free()) is the
source of many bugs and a lot of programming pain

 A language with automatic garbage collection relieves the
programmer of the burden of coding when free’s should
take place

 Yeah!

 Let’s look at (automatic) garbage collection…

4

CSE333, Winter 2021L13: Memory Management

Gabage Collection (GC)

 The goal of garbage collection is to not run out of dynamically
allocatable memory (due to garbage)

 Includes unable to allocate a big enough piece due to fragmentation

 When should garbage be collected?
1. Immediately, when it turns into garbage?

2. When you run out of allocatable memory (or just before)?

3. Every once in a while?

 There’s a trade-off among
 On-going overhead costs

 Latency (dead time) while GC takes place

 Getting it right…

5

CSE333, Winter 2021L13: Memory Management

Mark-and-Sweep GC

 Java doesn’t define what GC method must be used
 There are many

 These slides try to present a general sense

 Mark-and-Sweep
 Mark: find all accessible memory

 Sweep: move the accessible memory into a contiguous region,
leaving behind continguous empty space

6

CSE333, Winter 2021L13: Memory Management

Mark-and-Sweep

7

Stack

Heap

main

sub1

sub2

“Mark” to avoid going around
cycles forever.

(Marked traversal has application
outside of GC in processing graphs
that may have loops.)

The blank portions are not
currently in use:

either free or garbage

CSE333, Winter 2021L13: Memory Management

Mark-and-Sweep

8

Stack

Heap

main

sub1

sub2

I haven’t tried to sweep in a logical
order, so don’t read anything into
the order

CSE333, Winter 2021L13: Memory Management

Mark-and-Sweep

9

Stack

Heap

main

sub1

sub2

The objects in a cycle become
garbage when the root pointer is
over-written.

They’ll be collected next time GC is
run.

CSE333, Winter 2021L13: Memory Management

Why Doesn’t C++ Do Mark-and-Sweep GC?

10

Stack

Heap

main

sub1

sub2

CSE333, Winter 2021L13: Memory Management

C++ Can’t Mark-and-Sweep

11

Stack

Heap

main

sub1

sub2

• Contrary to the goal of going
faster than humanly possible,
plus…

• It can’t identify root pointers
• Pointers can masquerade

as int’s
• int’s can masquerade as

pointers
• No runtime information

about “type”

CSE333, Winter 2021L13: Memory Management

An Alternative GC: Reference Counting

12

Stack

Heap

main

sub1

sub2

• Count the number of pointers to each
hunk of memory

• Increment count when a new pointer is
created

• Decrement when a pointer is “lost”
• Assign a new value to the

pointer
• Free if the count reaches zero

2

2

2

1

1

1

CSE333, Winter 2021L13: Memory Management

Reference Counting Failure

13

Stack

Heap

main

sub1

sub2

Cycles in the graph are
a problem!

2

1
2

1

1

1

1

CSE333, Winter 2021L13: Memory Management

Reference Counting

 Pro’s
 Lowish overhead

• You’re not moving huge hunks of memory around

 Garbage collected as soon as it become garbage (sort of)

 Typically low latency per GC event
• Okay, could be slow if you’re cascading deletion of an enormous linked list,

but that’s part of the cost of that data structure
– (i.e., use something else if it bother you)

 Con’s
 Space overhead, possibly (if objects are small)

 Doesn’t always work

14

CSE333, Winter 2021L13: Memory Management

C++ and Memory Management
 The original approach is “just get it right” – debug until you do

 Can be hard to get it right

 Run valgrind, hope your tests will provoke a leak if one is exists, and then fix it

 In very dynamic situations, you end up implementing ref counting

 Problems that can arise if you get it wrong
 Memory leaks

 Double free’s

 Dangling pointers (multiple pointers to one block of memory and not all are
reset when the memory is freed)

 We need help!

15

CSE333, Winter 2021L13: Memory Management

RAII Idiom to the Rescue

 RAII – resource acquisition is initialization

16

template <class T>
class Ptr {
public:
Ptr() { ptr_ = new T; }
~Ptr() { if (ptr_) delete ptr_; }
T & operator*() { return *ptr_; }
private:
T * ptr_;

};

CSE333, Winter 2021L13: Memory Management

RAII

17

template <class T>
class Ptr {
public:
Ptr() { ptr_ = new T; }
~Ptr() { if (ptr_) delete ptr_; }
T & operator*() { return *ptr_; }

private:
T * ptr_;

};

void sub(int n)
{
Ptr<int> pI;
*pI = n;
sub2(pI);

}

void otherSub(int n)
{
int * pI = new int;
*pI = n;
otherSub2(pI);
delete pI;

}

vs.

Q: Is there any difference?
A: Yes.

Both should be checking return code from new, but ignore that…

CSE333, Winter 2021L13: Memory Management

RAII - Yes!

18

void sub(int n)
{
Ptr<int> pI;
*pI = n;
sub2(pI);

}

void otherSub(int n)
{
int * pI = new int;
*pI = n;
otherSub2(pI);
delete pI;

}

Q: Is there any difference?
A: Yes.

Both should be checking return code from new, but ignore that…

Suppose an exception occurs while executing sub2/otherSub2…

CSE333, Winter 2021L13: Memory Management

Limitations of Our Crude RAII Attempt

19

template <class T>
class Ptr {
public:
Ptr() { ptr_ = new T; }
~Ptr() { if (ptr_) delete ptr_; }
T & operator*() { return *ptr_; }

private:
T * ptr_;

};

void sub(Ptr<int> p) {
}

int main(int argc, char *argv[])
{
Ptr<int> pInt;
Ptr<int> pOtherInt;

*pInt = 4;
pOtherInt = pInt;

sub(pInt);

int * rawPtr = &*pInt;

return 0;
}

What’s wrong with this code?

CSE333, Winter 2021L13: Memory Management

Limitations of Our Crude RAII Attempt

20

template <class T>
class Ptr {
public:
Ptr() { ptr_ = new T; }
~Ptr() { if (ptr_) delete ptr_; }
T & operator*() { return *ptr_; }

private:
T * ptr_;

};

void sub(Ptr<int> p) {
}

int main(int argc, char *argv[])
{
Ptr<int> pInt;
Ptr<int> pOtherInt;

*pInt = 4;
pOtherInt = pInt;

sub(pInt);

int * rawPtr = &*pInt;

return 0;
}

Memory leak

Dangling Pointer

Double Free

CSE333, Winter 2021L13: Memory Management

Overcoming the Flaws

 Sometimes scope isn’t sufficiently flexible to determine
lifetime
 Let’s use reference counting of the thing pointed at

 Sometimes scope is exactly the right lifetime…

 Sometimes copying pointers is a problem…
 Let’s override (or maybe disable) copy construction and

assignment

 The STL provides implementations that do all this for us!

21

CSE333, Winter 2021L13: Memory Management

C++ Smart Pointers – std::unique_ptr<T>
 std::unique_ptr<int> OnlyPtr(new int(5)); // or…

auto OnlyPtr = std::make_unique<int>(5); // since C++14
std::cout << *OnlyPtr << std::endl;
 For the special case is when there should be only a single (unique)

pointer to the allocated memory

 std::unique_ptr<T> deletes copy constructor and (normal) assignment

 It (of course) deletes the allocated memory on destruction

 There are methods to
 Cause deletion now (and set unique_ptr to nullptr)

 Produce the pointer as a regular pointer (!)

 Other bad ideas (and some good ones)

22

CSE333, Winter 2021L13: Memory Management

First (Special) Case: There Can Be Only One Ptr

23

new’ed
memory

P1

P2

P2 = P1; // I want this to be a compile time error!

I can write correct code if there’s only one pointer to each hunk of dynamically
allocated memory and it’s freed when that pointer is lost

• No leaks
• No double frees
• No dangling pointers

Issue: I have to make sure there’s never more than one copy of the pointer

CSE333, Winter 2021L13: Memory Management

Special Case: There Can Be Only One Ptr

24

new’ed
memory

P1

std::unique_ptr<int> P2(P1.release());

new’ed
memory

P1

P2

CSE333, Winter 2021L13: Memory Management

More General Case – std::shared_ptr<T>

 std::shared_ptr<T> implements reference counting
 Can have any number of pointers to dynamically allocated

memory

 Copy and assignment operations are overloaded
• A = B;

– Increment the reference count of memory B is pointing at, if any

– Decrement the reference count of memory A was pointing at, if any

 std::shared_ptr<int> FirstPtr(new int(5)); // don’t do this…
auto SecondPtr = std::make_shared<int>(10); // since C++11
SecondPtr = FirstPtr; // memory holding 10 is deleted
FirstPtr = nullptr; // no delete takes place

25

CSE333, Winter 2021L13: Memory Management

std::shared_ptr issue…

 If there can be many pointers pointing to the same
memory, how can I know when to delete it
 I can’t search for pointers

• Because it’s too expensive and because I can’t

 Keeping a list of pointers associated with the memory would be
very expensive
• Have to update potentially two such lists each time a pointer gets a

new value

 Solution: reference counting
 Don’t keep a list of pointers pointing to the memory object, just

keep track of how many of them there are

26

CSE333, Winter 2021L13: Memory Management

Reference Counting
 std::shared_ptr is a pointer object

 The reference count applies to the thing it points at, not
to the pointer

 So, we can’t allocate memory for the reference count in
the shared_ptr object
 And we can’t allocate it in the object pointed to (in part because

there’s no universal base class for all C++ objects)

27

new’ed
memory

P1

P2

2

CSE333, Winter 2021L13: Memory Management

std::weak_ptr

 Reference counting has the problem that isolated cycles
are never deleted

28

head
2 2 1

head
1 2 1

CSE333, Winter 2021L13: Memory Management

std::weak_ptr
 A weak_ptr is a pointer that doesn’t contribute to the

reference count

29

head
1 1 1

head
0 0 0

CSE333, Winter 2021L13: Memory Management

std::weak_ptr Issue?

30

shared_ptr Dynamically
Allocated
memoryweak_ptr

shared_ptr = nullptr;

shared_ptr

weak_ptr

Ref cnt = 1

Because weak_ptr’s don’t contribute
to reference count, what they’re
pointing to can be deleted.

Can you afford to find all weak_ptr’s
pointing to the object and set them to
nullptr?

Dynamically
Allocated
memory

CSE333, Winter 2021L13: Memory Management

weak_ptr Issue?

31

shared_ptr Dynamically
Allocated
memoryweak_ptr

1

1

shared_ptr

weak_ptr

0
nullptr

1

shared_ptr = nullptr;

if (weak_ptr.expired())
weak_ptr.reset();

Explicit test of validity

auto new_shared = weak_ptr.lock();

new_shared is a shared_ptr that is
either nullptr or not

CSE333, Winter 2021L13: Memory Management

Summary
 Never use raw (C style) pointers
 Use smart pointers

 Never use new()
 Use make_unique<T> and make_shared<T> to construct pointers

 Never use delete
 Use reset(), when needed

 There can be complications…
 unique_ptr, in particular, has some unexpected interactions

• Stand by for the next module

32

CSE333, Winter 2021L13: Memory Management

Bonus Slide

 The actual Java garbage collection techniques use
multiple regions of memory to perform mark-and-sweep

 The motivation and use is similar to solutions to other
memory management problems
 E.g., managing virtual memory in operating systems

 If you’re at all interested, I think you would find it fun to
do some reading about it
 Maybe with a friend

33

