YA UNIVERSITY of WASHINGTON

L11: C++ Templates

C++ Generics - Templates
CSE 333 Winter 2021

Instructor: John Zahorjan

Teaching Assistants:
Matthew Arnold Nonthakit Chaiwong Jacob Cohen
Elizabeth Haker Henry Hung Chase Lee

Leo Liao Tim Mandzyuk Benjamin Shmidt
Guramrit Singh

CSE333, Winter 2021

W UNIVERSITY of WASHINGTON L11: C++ Templates CSE333, Winter 2021

Lecture Outline

Gen eriC p rog ramms i n g https://www.definitions.net/definition/generic+programming

In the simplest definition, generic programming is a style of computer programming in which algorithms are
written in terms of to-be-specified-later types that are then instantiated when needed for specific types
provided as parameters. This approach, pioneered by ML in 1973, permits writing common functions or types
that differ only in the set of types on which they operate when used, thus reducing duplication. Such software
entities are known as generics in Ada, Delphi, Eiffel, Java, C#, F#, and Visual Basic .NET; parametric
polymorphism in ML, Scala and Haskell; templates in C++ and D; and parameterized types in the influential
1994 book Design Patterns. The authors of Design Patterns note that this technique, especially when combined
with delegation, is very powerful but that "[dynamic], highly parameterized software is harder to understand
than more static software." The term generic programming was originally coined by David Musser and
Alexander Stepanov in @ more specific sense than the above,
to describe a programming paradigm whereby fundamental requirements on types are abstracted from across
concrete examples of algorithms and data structures and formalised as concepts, with generic functions
implemented in terms of these concepts, typically using language genericity mechanisms as described above.

+» C++ Templates
" Essential to the implementation of the C++ standard library

= Possibly useful to your application code

https://www.definitions.net/definition/generic+programming

W UNIVERSITY of WASHINGTON L11: C++ Templates CSE333, Winter 2021

Generalizing From Examples

(7/ returns 0 if equal, 1 if valuel is bigger, -1 otherwise
int compare (const int &valuel, const int &valuel2) {

1f (valuel < wvalue?) return -1;

1f (value?2 < wvaluel) return 1;

return 0;

~

// returns 0 if equal, 1 if valuel is bigger, -1 otherwise
int compare (const string &valuel, const string &value2) {
1f (valuel < wvalue2) return -1;
1f (value?2 < wvaluel) return 1;
return 0O;

// returns 0 if equal, 1 if valuel is bigger, -1 otherwise
int compare (const Vector3d &valuel, const Vector3d &value2) {
1f (valuel < wvalue2) return -1;
1f (value?2 < wvaluel) return 1;
return 0O;

W UNIVERSITY of WASHINGTON L11: C++ Templates CSE333, Winter 2021

Recognizing and Generalizing

+» Recognizing
" There is one abstract computation

" The program implementation requires three distinct pieces of
code expressing that computation

= Why?

+» Generalizing

" Could we instead write a single generic expression of a

computation that is generalizable across an appropriate set of
specific types?

= Answer: Yes!

L11: C++ Templates CSE333, Winter 2021

YA UNIVERSITY of WASHINGTON

Parametric Polymorphism

The programmer provides a single, generic implementation of a

computation that applies to many types
= We do not require there be any parent/sub-class relationship among the types

From that, we need to instantiate a concrete version of generic code that is
specialized to the types of the arguments actually supplied

= A highly simplified example: what does “x+y” mean?

When should this specialization take place?

= Statically — at compile time
® Dynamically — during program execution

Statically results in faster executables

® Guess which approach C++ takes...!

W UNIVERSITY of WASHINGTON L11: C++ Templates CSE333, Winter 2021

C++ Templates

+» A C++ template is, well, a generic code template from which
specific code can be generated

" The template takes one (or more) arguments that typically are type
names

= When the compiler encounters a use of the generic code, it instantiates
the specific concrete realization of it according to the types the generic
code is being asked to operate on
+» How does the compiler determine the types for a particular
use’?
" The programmer tells it, or

= The compiler can figure it out because it knows the types of the arguments

W UNIVERSITY of WASHINGTON L11: C++ Templates CSE333, Winter 2021

C++ Function Templates

#include <iostream>
#include <string>

// returns 0 if equal, 1 if valuel is bigger, -1 otherwise
template <typename T> // <...> can also be written <class T>
int compare (const T &valuel, const T &value2) {

1f (valuel < wvalue?) return -1;

1f (value2 < wvaluel) return 1;

return 0; $\\\\\\\\\\ _
) No code is generated for the template

int main(int argc, char **argv) {
std::string h("hello"), w("world");
std::cout << compare<int> (10, 20) << std::endl;
std::cout << compare<std::string>(h, w) << std::endl;
std::cout << compare<double>(50.5, 50.6) << std::endl;
std::cout << compare <int>(-5, -20) << std::endl;
return 0O;

Three programmer explicit instantiations

W UNIVERSITY of WASHINGTON L11: C++ Templates CSE333, Winter 2021

Compiler Inference

« Sometimes the compiler can figure out the instantiated types itself

#include <iostream>
#include <string>

// returns 0 1if equal, 1 if valuel is bigger, -1 otherwise
template <typename T>
int compare (const T &valuel, const T &value2) {

1f (valuel < wvalue?2) return -1;

1f (value2?2 < wvaluel) return 1;

return 0;

J Yeah! ?

int main(int argc, char **argv) {
std::string h("hello™), w("
std::cout << compare (10, 20)-<< std::endl; // ok
std::cout << compare (h, w)* << std::endl; // ok
std::cout << compare ("Hello", "World") << std::endl; // hm.

return 0;

BUG!

(Compiler is right; programmer is wrong.)

w UNIVERSITY of WASHINGTON L11: C++ Templates CSE333, Winter 2021

Templates Aside #1

+» What’s going on is more complicated that our simple model of
compile to assembler, assemble to machine code, and link

= The compiler has to pick a specific name for the instantiated function,
because the linker needs specific names to match call sites to method
entry points

"= The compiler needs to instantiate in each compilation unit (source file),
because maybe that’s the only file in which that templated function is
used with that particular type

« But maybe not

= So the linker has to be prepared to find multiple definitions of a function
with a single name

w UNIVERSITY of WASHINGTON L11: C++ Templates CSE333, Winter 2021

Templates Aside #2

+» Think about trying to implement “templates” in C using
preprocessor macros

" What part of template functionality could you implement?

" What part of template functionality couldn’t you implement?

10

YA UNIVERSITY of WASHINGTON

Compile Time Instantiation Creates a Restriction

Template code must be available
for expansion where it is used.

/

[] c
#include <iostrdam>
#include "compafre.h"¢

using namespack std;

int main (int fargc,

{

char **argv)

cout << comp<int> (10,
cout << endl;
return 0;

20);

J

L11: C++ Templates

That means it “must go” in the .h
file, not in a separate .cc file.

/

#ifndef COMPARE H
#define COMPARE H

template <typ¢name T>
int comp (congt T& a,

{

const T& b)

1f (a < Db)
1f (b < a)
return 0O;

return -1;
return 1;

#endif // COMPARE H_

CSE333, Winter 2021

11

YA UNIVERSITY of WASHINGTON

L11: C++ Templates

CSE333, Winter 2021

Templating Creates Another Restriction

template <typename T>
int comp (const T& a,
{
if (a < b) return -
if (b < a) return 1
return 0O;

const T& Db)

1;

.
4

VS.

template <typename T>
int comp (const T& a,
{
if (a < b) return -
if (a > b) return 1
return 0;

const T& b)

1;

.
14

What’s the difference between
these two implementations?

12

W UNIVERSITY of WASHINGTON L11: C++ Templates CSE333, Winter 2021

C++ Template (Constant) Values (Not Types)

+ You can use non-types (constant values) in a template

» When instantiating, the value must be known at compile time

\

— .
#include <iostream>

// return pointer to new N-element heap array filled with val
template <typename T, int N>
T* wvalarray(const T & val) {
T* a = new T[N];
for (int 1 = 0; i < N; ++1i)
ali] = val;
return a;

}

int main(int argc, char **argv) {
int *ip = valarray<int, 10>(17);
std::string *sp = valarray<std::string, 12>(“hello”);

}

\ S

« This is not macro expansion

« This is not runtime parameter passing

13

w UNIVERSITY of WASHINGTON L11: C++ Templates CSE333, Winter 2021

Class Templates

« Templates are useful for classes as well
= (In fact, that was one of the main motivations for templates!)

« The standard library (STL) is full of them

= Compelling example: generic containers

+~ Example: Imagine we want a class whose instances hold a pair of things
such that we can:
= Set the value of the first thing
= Set the value of the second thing
= Get the value of the first thing0
= Get the value of the second thing
= Swap the values of the things

® Print the pair of things

14

YA UNIVERSITY of WASHINGTON L11: C++ Templates

Templated Pair Class Definition

CSE333, Winter 2021

(#ifndef PAIR H
#define PAIR H

template <typename T> class Pair {

public:
Pair () { };
T get first() const { return first ; }
T get second() const { return second ;

Pair<T> & set_first(T &other) ;
Pair<T> & set_second(T &other) ;
Pair<T> & Swap();

private:
T first_;
T second ;

¥

// continued on next slide
_

}

15

W UNIVERSITY of WASHINGTON L11: C++ Templates CSE333, Winter 2021

Templated Pair Function Definitions

(template <typename T> b

Pair<T> & Pair<T>::set first(T &other)
{

first = other;

return *this;

}

template <typename T>

Pair<T> & Pair<T>::set second(T &other) Note: This weird thing where we

{ put method definitions in the .h
second = other; file but outside of the class
return *this; declaration can be done with

} non-template classes as well.

template <typename T>
Pair<T> & Pair<T>::Swap ()
{

T tmp = first ;

first = second ;

second = tmp;

return *this;

// continued on next slide
\ y

16

YA UNIVERSITY of WASHINGTON L11: C++ Templates

CSE333, Winter 2021

Non-Class Method Using Templated Pair

template <typename T>
std: :ostream &operator<<(std::ostream &out, const Pair<T>& p)
return out << "Pair (" << p.get first() << ", "
<< p.get _second() << ")";

#endif PAIR H

{

17

W UNIVERSITY of WASHINGTON L11: C++ Templates CSE333, Winter 2021

Using Pair in an App

(#include <iostream>
#include <string>

#include "Pair.h"

int main(int argc, char** argv)

{
Pair<std::string> ps;
std::string x("foo"), y("bar");

ps.set first (x);
ps.set second(y) ;

ps.Swap () ;
std::cout << ps << std::endl;

return 0;

18

YW UNIVERSITY of WASHINGTON L11: C++ Templates

CSE333, Winter 2021

Templated Classes May Have Required Operations

function template
<algorithm>
std::find

template <class Inputlterator, class T> Inputlterator find (Inputlterator first, Inputlterator last, const T& val);
Find value in range

Returns an iterator to the first element in the range [first,last) that compares equal to val.
If no such element is found, the function returns /ast.

The function uses operator==to compare the individual elements to val.

The behavior of this function template is equivalent to:

template<class Inputlterator, class T>

Inputlterator find (Inputlterator first, Inputlterator last, const T& val) {
while (first!=last)

{
if (*first==val)
return first; ++first;

¥

return last;

by

19

W UNIVERSITY of WASHINGTON L11: C++ Templates CSE333, Winter 2021

Our Pair - Warning!

7

void Pair<T>::set first(T &other) |{)
first other;

}

void Pair<T>::set se
second = pther;

d(T &other) {

}

void Pair<T>::Swap ()
T tmp = first
first =

second

{

When might this fail?

.
14

tmp;
}

std: :ostream &opera r<<(s;d{:ostream &out, const Pair<T>& p) |
return out << JFair (" << p.get first() << ", "
p.get second() << ")";

20

	C++ Generics - Templates�CSE 333 Winter 2021
	Lecture Outline
	Generalizing From Examples
	Recognizing and Generalizing
	Parametric Polymorphism
	C++ Templates
	C++ Function Templates
	Compiler Inference
	Templates Aside #1
	Templates Aside #2
	Compile Time Instantiation Creates a Restriction
	Templating Creates Another Restriction
	C++ Template (Constant) Values (Not Types)
	Class Templates
	Templated Pair Class Definition
	Templated Pair Function Definitions
	Non-Class Method Using Templated Pair
	Using Pair in an App
	Templated Classes May Have Required Operations
	Our Pair - Warning!

