
CSE333, Winter 2021L13: C++ Heap

C++ Class Details, Heap
CSE 333 Winter 2021
C++ Class Details, Heap
CSE 333 Winter 2021

Instructor: John Zahorjan

Teaching Assistants:

Matthew Arnold Nonthakit Chaiwong Jacob Cohen

Elizabeth Haker Henry Hung Chase Lee

Leo Liao Tim Mandzyuk Benjamin Shmidt

Guramrit Singh

CSE333, Winter 2021L13: C++ Heap

Lecture Outline

 Class Details
 Filling in some gaps from last time

 Using the Heap
 new / delete / delete[]

2

CSE333, Winter 2021L13: C++ Heap

Synthesized Constructors / Destructor / Assignment

 You can explicitly indicate you want the compiler to synthesize
them

 Why?
 Communicate to another programmer that this really is your intention

 Cause constructor synthesis even when you have defined another
constructor

3

class Point {
public:
Point() = default; // the default ctor
~Point() = default; // the default dtor
Point(const Point& copyme) = default; // the default cctor
Point& operator=(const Point& rhs) = default; // the default "="
...

CSE333, Winter 2021L13: C++ Heap

Synthesized Constructors / Assignment

 When you intend that they shouldn’t be used, make sure
they’re not!

 Ridiculous side note:
Yes, you can delete the destructor, ~Point(), but then your code compiles
only if you create a Point only using new and create a memory leak by never
deleting a Point

4

class Farm {
public:
Farm() = delete;
Point(const Farm& copyme) = delete;
Farm& operator=(const Point& rhs) = delete;

private:
Address *p_address; // some new’ed memory

}; // class Point

CSE333, Winter 2021L13: C++ Heap

struct vs. class
 In C, a struct can only contain data fields
 Has no methods and all fields are always accessible
 In struct foo, the foo is a “struct tag”, not an ordinary data type

 In C++, struct and class are (nearly) the same!
 Both define a new type (the struct or class name)
 Both can have methods and member visibility (public/private/protected)
 Only real (minor) difference: members are default public in a struct

and default private in a class

 Common style/usage convention:
 Use struct for simple bundles of data

• Convenience constructors can make sense though
 Use class for abstractions with data + functions

5

CSE333, Winter 2021L13: C++ Heap

Access Control
 Access modifiers for members:
 public: accessible to all parts of the program

 private: accessible to the member functions of the class
• Private to class, not object instances

 protected: accessible to member functions of the class and
any derived classes

 Rules:
 Access modifiers apply to all members that follow until another

access modifier is reached

 If no access modifier is specified, <then there’s some rule>
• Never don’t specify access modifiers

6

CSE333, Winter 2021L13: C++ Heap

Operator Overloading

 C++ identifies operators syntactically
6 + x
--my_obj
my_obj * your_obj
this_obj = that_obj + the_other_obj

 Okay, you’ve found the operators. Now what?
 The type(s) of the operand(s) determine what “method” the

operator is

7

CSE333, Winter 2021L13: C++ Heap

Why Would You Customize Operators?
 Assignment is special in that the compiler has a default meaning for =

 Customize when that meanings is wrong for your application

 What about other operators
 +, -, *, /, &, (), <<, >>, …, ,, etc.

 Compiler has default meanings for those as well
 at least for some types of operands

 In Java, string_1 + string_2 is built into the language, because class
string is part of the language

 In C++, string_1 + string_2 is created by library programmers who
implemented the String class using a generally available feature of the
language

8

CSE333, Winter 2021L13: C++ Heap

Why Customize (Overload) Operators?
 There’s nothing you can compute with overloaded operators you can’t

compute without them

 But sometimes you prefer the syntax of operators to function call syntax
 What syntax do you want (your and your clients) to use?

 What syntax is most likely to be used correctly / not to be mis-used?

9

There are syntax distinctions.
There are a side-effects distinctions.
There are a performance distinctions.

Vector v1, v2, v3, v4;
…
v4 = v1 + v2 + v3;

vs.
v4.assign(v1.add(v2.add(v3)));

vs.
v2.add(v3);
v1.add(v2);
v4.assign(v1);

CSE333, Winter 2021L13: C++ Heap

What Are the Distinctions?

10

v4.assign(v1.add(v2.add(v3)));

Vector Vector::add(const Vector &other) const
{

Vector result(x+other.x, y+other.y);
return result;

}

v2.add(v3);
v1.add(v2);

v4.assign(v1);

Vector& Vector::add(const Vector &other)
{

x += other.x;
y += other.y;
return *this;

}

v4 = v1 + v2 + v3;

Vector Vector::operator+(const Vector &other) const
{

Vector result(x+other.x, y+other.y);
return result;

}

…

Syntax

Semantics

function
call

infix
operator

object
update

temporary
object

creation

CSE333, Winter 2021L13: C++ Heap

Semantic Choice / Temporaries
 Being able to create compiler managed temporaries often leads to simpler,

cleaner, less drive-you-crazy code
 Vector w = x + y + z;

or
Vector w = x.add(y.add(z));

 For the compiler to deal with destruction, the temporaries cannot be pointers or
references, they must be objects

 Object creation/destruction can be expensive

11

temporary created

CSE333, Winter 2021L13: C++ Heap

Implementing Operator Overloading

 Can overload operators using member functions
 For binary operators, look at the class of the argument on the left

my_obj + 6
my_obj * your_obj

 Can overload operators using nonmember functions
MyClass& operator+(MyClass& o, int x)
{

o.set(o.get()+x);
return o;

}

12

CSE333, Winter 2021L13: C++ Heap

friend Functions

 A class can give a nonmember function (or class) access to its
nonpublic members by declaring it as a friend
 friend function is not a class member, but has access privileges as if it were
 friend functions are usually unnecessary if your class includes appropriate “getter”

public functions

 It is common to overload ostream insertion (<<) and istream extraction (>>)
 std::cout << “Point A: ” << pointA << “ Point B: “ << pointB << std::endl

 This isn’t the only way to get this effect in C++ though…

13

class Complex {
...
friend std::istream& operator>>(std::istream& in, Complex& a);
...

};

std::istream& operator>>(std::istream& in, Complex& a) {
...

}

CSE333, Winter 2021L13: C++ Heap

Lecture Outline

 Class Details
 Filling in some gaps from last time

 Using the Heap
 new / delete / delete[]

14

CSE333, Winter 2021L13: C++ Heap

nullptr (as of C++11)

 In C we used NULL to be a special pointer value
 Used to indicate errors

 Dereferencing NULL is a run-time error

 NULL is 0 as an int, false as a Boolean

 NULL is typically a void*

 In C++, we have nullptr
 It’s a pointer type

 It will implicitly convert to every other pointer type

 It will resist becoming an integer

15

CSE333, Winter 2021L13: C++ Heap

new/delete

 To allocate on the heap in C++, you use the new keyword
instead of malloc() from stdlib.h
 You can use new to allocate an object (e.g. new Point)

• Will execute appropriate constructor as part of object allocate/create

 You can use new to allocate a primitive type (e.g. new int)

 To deallocate a heap-allocated object or primitive, use the
delete keyword instead of free() from stdlib.h
 Don’t mix and match!

• Never free() something allocated with new

• Never delete something allocated with malloc()

16

CSE333, Winter 2021L13: C++ Heap

new/delete Example
#include "Point.h"

int main() {
Point* x = new Point(1, 2);
int* y = new int(3);

std::cout << “Point: " << *x << std:: endl;
std:: cout << “int: " << *y << std:: endl;

delete x;
delete y;

return 0;
}

17

CSE333, Winter 2021L13: C++ Heap

Dynamically Allocated Arrays

 To dynamically allocate an array:
 Default initialize:

 To dynamically deallocate an array:
 Use delete[] name;

 It is an incorrect to use “delete name;” on an array
• The compiler probably won’t catch this, though (!) because it can’t

always tell if name* was allocated with new type[size];
or new type;

– Especially inside a function where a pointer parameter could point to a
single item or an array and there’s no way to tell which!

• Result of wrong delete is undefined behavior

type* name = new type[size];

delete[] name;

18

CSE333, Winter 2021L13: C++ Heap

Arrays Example (primitive)
#include "Point.h"

int main() {
int stack_int;
int* heap_int = new int;
int* heap_init_int = new int(12);

int stack_arr[10];
int* heap_arr = new int[10];
int* heap_init_arr = new int[10](); // uncommon usage
int* heap_init_error = new int[10](12); // bad syntax

...

delete heap_int; //
delete heap_init_int; //
delete heap_arr; //
delete[] heap_init_arr; //

return 0;
}

19

ok

ok
error – must be delete[]
ok

CSE333, Winter 2021L13: C++ Heap

Arrays Example (class objects)
#include "Point.h"

int main() {
...

Point stack_point(1, 2);
Point* heap_point = new Point(1, 2);

Point* err_pt_arr = new Point[10];// bug-no Point() ctr

Point* err2_pt_arr = new Point[10](1,2); // bad syntax
...

delete heap_point;

...

return 0;
}

20

CSE333, Winter 2021L13: C++ Heap

malloc vs. new
malloc() new

What is it? a function an operator or keyword

How often used (in C)? often never

How often used (in C++)? rarely often

Allocates Memory bytes arrays, structs, objects,
primitives

Calls Constructor No Yes

Returns a void*
(should be cast)

appropriate pointer type
(doesn’t need a cast)

When out of memory returns NULL throws an exception

Deallocation free() delete or delete[]

21

