WA UNIVERSITY of WASHINGTON

L13: C++ Heap

C++ Class Details, Heap
CSE 333 Winter 2021

Instructor: John Zahorjan

Teaching Assistants:
Matthew Arnold
Elizabeth Haker

Leo Liao

Guramrit Singh

Nonthakit Chaiwong Jacob Cohen
Henry Hung Chase Lee
Tim Mandzyuk Benjamin Shmidt

CSE333, Winter 2021

WA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Winter 2021

Lecture Outline

+ Class Details

" Filling in some gaps from last time
+ Using the Heap

" new/delete/delete]]

WA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Winter 2021

Synthesized Constructors / Destructor / Assighment

+ You can explicitly indicate you want the compiler to synthesize

them
(class Point { b
public:

Point () = default; // the default ctor
~Point () = default; // the default dtor
Point (const Pointé& copyme) = default; // the default cctor
Point& operator=(const Point& rhs) = default; // the default "="

< J

« Why?

= Communicate to another programmer that this really is your intention

= Cause constructor synthesis even when you have defined another
constructor

WA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Winter 2021

Synthesized Constructors / Assignment

+ When you intend that they shouldn’t be used, make sure
they’re not!

class Farm {

public:

Farm() = delete;

Point (const Farm& copyme) = delete;

Farm& operator=(const Pointé& rhs) = delete;
private:

Address *p address; // some new’ed memory
Y; // class Point

Ridiculous side note:

Yes, you can delete the destructor, ~Point(), but then your code compiles
only if you create a Point only using new and create a memory leak by never
deleting a Point

WA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Winter 2021

struct vs. class

+ InC,a struct can only contain data fields
= Has no methods and all fields are always accessible
" Instruct foo,the fooisa “struct tag”, not an ordinary data type

% In C++, struct and class are (nearly) the same!
= Both define a new type (the struct or class name)
= Both can have methods and member visibility (public/private/protected)

® Only real (minor) difference: members are default publicina struct
and default private ina class

+» Common style/usage convention:
= Use struct for simple bundles of data
- Convenience constructors can make sense though
= Use class for abstractions with data + functions

WA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Winter 2021

Access Control

+ Access modifiers for members:
" public: accessible to all parts of the program

" private: accessible to the member functions of the class

- Private to class, not object instances
= protected: accessible to member functions of the class and
any derived classes
+» Rules:

= Access modifiers apply to all members that follow until another
access modifier is reached

" |If no access modifier is specified, <then there’s some rule>

- Never don’t specify access modifiers

WA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Winter 2021

Operator Overloading

+» C++ identifies operators syntactically
6+ X
--my_obj
my_obj * your_obj
this_obj = that_obj + the_other_obj

+» Okay, you’ve found the operators. Now what?

" The type(s) of the operand(s) determine what “method” the
operator is

WA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Winter 2021

Why Would You Customize Operators?

Assignment is special in that the compiler has a default meaning for =

= Customize when that meanings is wrong for your application

What about other operators

" +I W, *I /I &/ (); <<, >>, YT etc.

Compiler has default meanings for those as well

= atleast for some types of operands

InJava, string 1 + string 2is built into the language, because class
string is part of the language

InC++, string 1 + string 2 iscreated by library programmers who
implemented the String class using a generally available feature of the
language

WA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Winter 2021

Why Customize (Overload) Operators?

There’s nothing you can compute with overloaded operators you can’t
compute without them

But sometimes you prefer the syntax of operators to function call syntax
= What syntax do you want (your and your clients) to use?

= What syntax is most likely to be used correctly / not to be mis-used?

Vector vl, v2, v3, v4;

@ vd =vl1 +Vv2 + Vv3;
Vs. There are syntax distinctions.
v4.assign(vl.add(v2.add(v3))); There are a side-effects distinctions.
VS There are a performance distinctions.

v2.add(v3);
@ vl.add(v2);

v4.assign(vl);

WA UNIVERSITY of WASHINGTON

L13: C++ Heap

What Are the Distinctions?

function
call

Syntax

infix
operator

v2.add(v3);

i v4.assign(vl.add(v2.add(v3)));

{

Vector Vector::add(const Vector &other) const

vl.add(v2);
v4.assign(vl);

Vector& Vector::add(const Vector &other)

L o e e e e e e e e ——,—,—————————— =

Vector result(x+other.x, y+other.y); {
return result; X += other.x;
} y += other.y;
3 return *this;
}
e e A e
________________________ v ! '
! v
v4 =vl +v2 +v3; |
Vector Vector::operator+(const Vector &other) const |
{ a
Vector result(x+other.x, y+other.y); :
return result; i
} |
Semantics _
temporary object
object update
creation

10

CSE333, Winter 2021

WA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Winter 2021

Semantic Choice / Temporaries

+ Being able to create compiler managed temporaries often leads to simpler,
cleaner, less drive-you-crazy code

" Vectorw=x+y+7z

or

Vector w = x.add(y.add(z

temporary created

" For the compiler to deal with destruction, the temporaries cannot be pointers or
references, they must be objects

+» Object creation/destruction can be expensive

11

WA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Winter 2021

Implementing Operator Overloading

+ Can overload operators using member functions
" For binary operators, look at the class of the argument on the left
my obj+ 6
my_obj * your_obj

« Can overload operators using nonmember functions

MyClass& operator+(MyClass& o, int x)
{

o.set(o.get()+x);
return o;

12

WA UNIVERSITY of WASHINGTON

L13: C++ Heap

friend Functions

A class can give a nonmember function (or class) access to its
nonpublic members by declaringitasa friend

friend function is not a class member, but has access privileges as if it were

friend functions are usually unnecessary if your class includes appropriate “getter”
public functions

CSE333, Winter 2021

(class Complex {

friend std::istream& operator>>(std::istreamé& in, Complexé& a);

std::istreamé& operator>>(std::istream& in, Complexé& a)

J

It is common to overload ostream insertion (<<) and istream extraction (>>)

std::cout << “Point A: ” << pointA << “ Point B: “ << pointB << std::end|

This isn’t the only way to get this effect in C++ though...

13

WA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Winter 2021

Lecture Outline

« Class Details

® Filling in some gaps from last time
+» Using the Heap
" new/delete/delete]]

14

WA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Winter 2021

nullptr (as of C++11)

% In Cwe used NULL to be a special pointer value
= Used to indicate errors
= Dereferencing NULL is a run-time error
= NULLis O as an int, false as a Boolean

= NULL is typically a void*

% In C++, we have nullptr
" |t’s a pointer type
= |t will implicitly convert to every other pointer type

= |t will resist becoming an integer

15

WA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Winter 2021

new/delete

« To allocate on the heap in C++, you use the new keyword
insteadof malloc () fromstdlib.h
" You can use new to allocate an object (e.g. new Point)
- Will execute appropriate constructor as part of object allocate/create

" You can use new to allocate a primitive type (e.g. new int)

+ To deallocate a heap-allocated object or primitive, use the
delete keyword instead of free () from stdlib.h

® Don’t mix and match!
- Never free () something allocated with new

- Never delete something allocated withmalloc ()

16

CSE333, Winter 2021

WA UNIVERSITY of WASHINGTON L13: C++ Heap

new/delete Example

- .
#include "Point.h"

int main () {
Point* x = new Point(l, 2);
int* y = new int(3);

std::cout << “Point: " << *x << std:: endl;
std:: cout << “int: " << *y << std:: endl;

delete x;
delete vy;

return 0;

17

WA UNIVERSITY of WASHINGTON L13: C++ Heap

CSE333, Winter 2021

Dynamically Allocated Arrays

+» To dynamically allocate an array:

= Defaultinitialize: | type* name = new typel[size];

+» To dynamically deallocate an array:

" Use|delete[] name;

" ltisanincorrecttouse “delete name;” onan array

- The compiler probably won’t catch this, though (!) because it can’t

always tell if name * was allocated with new type[size];
ornew type;

— Especially inside a function where a pointer parameter could point to a
single item or an array and there’s no way to tell which!

- Result of wrong delete is undefined behavior

18

WA UNIVERSITY of WASHINGTON

L13: C++ Heap

Arrays Example (primitive)

int main ()

delete]

return 0;

r#include "Point.h"

{

int stack int;
int* heap int = new int;
int* heap init int = new 1int(12);

int stack arr[10];
int* heap arr = new int[10];
int* heap init arr = new int[10](); // uncommon usage

int* heap init error = new int[10](12); // bad syntax

delete heap int;
delete heap init int;
delete heap arr;

heap init arr;

//
//
//
//

ok
ok

error — must be delete]]
ok

CSE333, Winter 2021

19

WA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Winter 2021

Arrays Example (class objects)

r#include "Point.h"

int main () {
Point stack point (1, 2);
Point* heap point = new Point(1l, 2);
Point* err pt arr = new Point[10];// bug-no Point () ctr

Point* err2 pt arr = new Point[10] (1,2); // bad syntax

delete heap point;

return 0;

20

WA UNIVERSITY of WASHINGTON L13: C++ Heap CSE333, Winter 2021

malloc vs. new

malloc() new
What is it? a function an operator or keyword
How often used (in C)? often never
How often used (in C++)? rarely often
arrays, structs, objects,
Allocates Memory bytes Y . J
primitives
Calls Constructor No Yes
- . .
Returns avoid approprla’te pointer type
(should be cast) (doesn’t need a cast)
When out of memory returns NULL throws an exception
Deallocation free () deleteordelete[]

21

