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Lecture Outline

+ Class Details

" Filling in some gaps from last time
+ Using the Heap

" new/delete/delete]]
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Synthesized Constructors / Destructor / Assighment

+ You can explicitly indicate you want the compiler to synthesize

them
(class Point { b
public:

Point () = default; // the default ctor
~Point () = default; // the default dtor
Point (const Pointé& copyme) = default; // the default cctor
Point& operator=(const Point& rhs) = default; // the default "="

< J

« Why?

= Communicate to another programmer that this really is your intention

= Cause constructor synthesis even when you have defined another
constructor
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Synthesized Constructors / Assignment

+ When you intend that they shouldn’t be used, make sure
they’re not!

class Farm {

public:

Farm() = delete;

Point (const Farm& copyme) = delete;

Farm& operator=(const Pointé& rhs) = delete;
private:

Address *p address; // some new’ed memory
Y; // class Point

Ridiculous side note:

Yes, you can delete the destructor, ~Point(), but then your code compiles
only if you create a Point only using new and create a memory leak by never
deleting a Point
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struct vs. class

+ InC,a struct can only contain data fields
= Has no methods and all fields are always accessible
" Instruct foo,the fooisa “struct tag”, not an ordinary data type

% In C++, struct and class are (nearly) the same!
= Both define a new type (the struct or class name)
= Both can have methods and member visibility (public/private/protected)

® Only real (minor) difference: members are default publicina struct
and default private ina class

+» Common style/usage convention:
= Use struct for simple bundles of data
- Convenience constructors can make sense though
= Use class for abstractions with data + functions
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Access Control

+ Access modifiers for members:
" public: accessible to all parts of the program

" private: accessible to the member functions of the class

- Private to class, not object instances
= protected: accessible to member functions of the class and
any derived classes
+» Rules:

= Access modifiers apply to all members that follow until another
access modifier is reached

" |If no access modifier is specified, <then there’s some rule>

- Never don’t specify access modifiers
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Operator Overloading

+» C++ identifies operators syntactically
6+ X
--my_obj
my_obj * your_obj
this_obj = that_obj + the_other_obj

+» Okay, you’ve found the operators. Now what?

" The type(s) of the operand(s) determine what “method” the
operator is
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Why Would You Customize Operators?

Assignment is special in that the compiler has a default meaning for =

= Customize when that meanings is wrong for your application

What about other operators

" +I W, *I /I &/ (); <<, >>, YT etc.

Compiler has default meanings for those as well

= atleast for some types of operands

InJava, string 1 + string 2is built into the language, because class
string is part of the language

InC++, string 1 + string 2 iscreated by library programmers who
implemented the String class using a generally available feature of the
language
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Why Customize (Overload) Operators?

There’s nothing you can compute with overloaded operators you can’t
compute without them

But sometimes you prefer the syntax of operators to function call syntax
= What syntax do you want (your and your clients) to use?

= What syntax is most likely to be used correctly / not to be mis-used?

Vector vl, v2, v3, v4;

@ vd =vl1 +Vv2 + Vv3;
Vs. There are syntax distinctions.
v4.assign(vl.add(v2.add(v3))); There are a side-effects distinctions.
VS There are a performance distinctions.

v2.add(v3);
@ vl.add(v2);

v4.assign(vl);
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What Are the Distinctions?

function
call

Syntax

infix
operator

v2.add(v3);

i v4.assign(vl.add(v2.add(v3)));

{

Vector Vector::add(const Vector &other) const

vl.add(v2);
v4.assign(vl);

Vector& Vector::add(const Vector &other)

L o e e e e e e e e ——,—,—————————— =

Vector result( x+other.x, y+other.y); {
return result; X += other.x;
} y += other.y;
3 return *this;
}
e e A e
________________________ v ! '
! v
v4 =vl +v2 +v3; |
Vector Vector::operator+(const Vector &other) const |
{ a
Vector result( x+other.x, y+other.y); :
return result; i
} |
Semantics _
temporary object
object update
creation

10
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Semantic Choice / Temporaries

+ Being able to create compiler managed temporaries often leads to simpler,
cleaner, less drive-you-crazy code

" Vectorw=x+y+7z

or

Vector w = x.add(y.add(z

temporary created

" For the compiler to deal with destruction, the temporaries cannot be pointers or
references, they must be objects

+» Object creation/destruction can be expensive

11
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Implementing Operator Overloading

+ Can overload operators using member functions
" For binary operators, look at the class of the argument on the left
my obj+ 6
my_obj * your_obj

« Can overload operators using nonmember functions

MyClass& operator+(MyClass& o, int x)
{

o.set(o.get()+x);
return o;

12



WA UNIVERSITY of WASHINGTON

L13: C++ Heap

friend Functions

A class can give a nonmember function (or class) access to its
nonpublic members by declaringitasa friend

friend function is not a class member, but has access privileges as if it were

friend functions are usually unnecessary if your class includes appropriate “getter”
public functions

CSE333, Winter 2021

(class Complex {

friend std::istream& operator>>(std::istreamé& in, Complexé& a);

std::istreamé& operator>>(std::istream& in, Complexé& a)

J

It is common to overload ostream insertion (<<) and istream extraction (>>)

std::cout << “Point A: ” << pointA << “ Point B: “ << pointB << std::end|

This isn’t the only way to get this effect in C++ though...

13
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Lecture Outline

« Class Details

® Filling in some gaps from last time
+» Using the Heap
" new/delete/delete]]
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nullptr (as of C++11)

% In Cwe used NULL to be a special pointer value
= Used to indicate errors
= Dereferencing NULL is a run-time error
= NULLis O as an int, false as a Boolean

= NULL is typically a void*

% In C++, we have nullptr
" |t’s a pointer type
= |t will implicitly convert to every other pointer type

= |t will resist becoming an integer

15
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new/delete

« To allocate on the heap in C++, you use the new keyword
insteadof malloc () fromstdlib.h
" You can use new to allocate an object (e.g. new Point)
- Will execute appropriate constructor as part of object allocate/create

" You can use new to allocate a primitive type (e.g. new int)

+ To deallocate a heap-allocated object or primitive, use the
delete keyword instead of free () from stdlib.h

® Don’t mix and match!
- Never free () something allocated with new

- Never delete something allocated withmalloc ()

16
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new/delete Example

- .
#include "Point.h"

int main () {
Point* x = new Point(l, 2);
int* y = new int(3);

std::cout << “Point: " << *x << std:: endl;
std:: cout << “int: " << *y << std:: endl;

delete x;
delete vy;

return 0;
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Dynamically Allocated Arrays

+» To dynamically allocate an array:

= Defaultinitialize: | type* name = new typel[size];

+» To dynamically deallocate an array:

" Use|delete[] name;

" ltisanincorrecttouse “delete name;” onan array

- The compiler probably won’t catch this, though (!) because it can’t

always tell if name * was allocated with new type[size];
ornew type;

— Especially inside a function where a pointer parameter could point to a
single item or an array and there’s no way to tell which!

- Result of wrong delete is undefined behavior
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Arrays Example (primitive)

int main ()

delete ]

return 0;

r#include "Point.h"

{

int stack int;
int* heap int = new int;
int* heap init int = new 1int(12);

int stack arr[10];
int* heap arr = new int[10];
int* heap init arr = new int[10](); // uncommon usage

int* heap init error = new int[10](12); // bad syntax

delete heap int;
delete heap init int;
delete heap arr;

heap init arr;

//
//
//
//

ok
ok

error — must be delete]]
ok

CSE333, Winter 2021
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Arrays Example (class objects)

r#include "Point.h"

int main () {
Point stack point (1, 2);
Point* heap point = new Point(1l, 2);
Point* err pt arr = new Point[10];// bug-no Point () ctr

Point* err2 pt arr = new Point[10] (1,2); // bad syntax

delete heap point;

return 0;
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malloc vs. new

malloc() new
What is it? a function an operator or keyword
How often used (in C)? often never
How often used (in C++)? rarely often
arrays, structs, objects,
Allocates Memory bytes Y . J
primitives
Calls Constructor No Yes
- . .
Returns avoid approprla’te pointer type
(should be cast) (doesn’t need a cast)
When out of memory returns NULL throws an exception
Deallocation free () deleteordelete[]
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