
CSE333, Winter 2021L13: C++ Heap

C++ Class Details, Heap
CSE 333 Winter 2021
C++ Class Details, Heap
CSE 333 Winter 2021

Instructor: John Zahorjan

Teaching Assistants:

Matthew Arnold Nonthakit Chaiwong Jacob Cohen

Elizabeth Haker Henry Hung Chase Lee

Leo Liao Tim Mandzyuk Benjamin Shmidt

Guramrit Singh

CSE333, Winter 2021L13: C++ Heap

Lecture Outline

 Class Details
 Filling in some gaps from last time

 Using the Heap
 new / delete / delete[]

2

CSE333, Winter 2021L13: C++ Heap

Synthesized Constructors / Destructor / Assignment

 You can explicitly indicate you want the compiler to synthesize
them

 Why?
 Communicate to another programmer that this really is your intention

 Cause constructor synthesis even when you have defined another
constructor

3

class Point {
public:
Point() = default; // the default ctor
~Point() = default; // the default dtor
Point(const Point& copyme) = default; // the default cctor
Point& operator=(const Point& rhs) = default; // the default "="
...

CSE333, Winter 2021L13: C++ Heap

Synthesized Constructors / Assignment

 When you intend that they shouldn’t be used, make sure
they’re not!

 Ridiculous side note:
Yes, you can delete the destructor, ~Point(), but then your code compiles
only if you create a Point only using new and create a memory leak by never
deleting a Point

4

class Farm {
public:
Farm() = delete;
Point(const Farm& copyme) = delete;
Farm& operator=(const Point& rhs) = delete;

private:
Address *p_address; // some new’ed memory

}; // class Point

CSE333, Winter 2021L13: C++ Heap

struct vs. class
 In C, a struct can only contain data fields
 Has no methods and all fields are always accessible
 In struct foo, the foo is a “struct tag”, not an ordinary data type

 In C++, struct and class are (nearly) the same!
 Both define a new type (the struct or class name)
 Both can have methods and member visibility (public/private/protected)
 Only real (minor) difference: members are default public in a struct

and default private in a class

 Common style/usage convention:
 Use struct for simple bundles of data

• Convenience constructors can make sense though
 Use class for abstractions with data + functions

5

CSE333, Winter 2021L13: C++ Heap

Access Control
 Access modifiers for members:
 public: accessible to all parts of the program

 private: accessible to the member functions of the class
• Private to class, not object instances

 protected: accessible to member functions of the class and
any derived classes

 Rules:
 Access modifiers apply to all members that follow until another

access modifier is reached

 If no access modifier is specified, <then there’s some rule>
• Never don’t specify access modifiers

6

CSE333, Winter 2021L13: C++ Heap

Operator Overloading

 C++ identifies operators syntactically
6 + x
--my_obj
my_obj * your_obj
this_obj = that_obj + the_other_obj

 Okay, you’ve found the operators. Now what?
 The type(s) of the operand(s) determine what “method” the

operator is

7

CSE333, Winter 2021L13: C++ Heap

Why Would You Customize Operators?
 Assignment is special in that the compiler has a default meaning for =

 Customize when that meanings is wrong for your application

 What about other operators
 +, -, *, /, &, (), <<, >>, …, ,, etc.

 Compiler has default meanings for those as well
 at least for some types of operands

 In Java, string_1 + string_2 is built into the language, because class
string is part of the language

 In C++, string_1 + string_2 is created by library programmers who
implemented the String class using a generally available feature of the
language

8

CSE333, Winter 2021L13: C++ Heap

Why Customize (Overload) Operators?
 There’s nothing you can compute with overloaded operators you can’t

compute without them

 But sometimes you prefer the syntax of operators to function call syntax
 What syntax do you want (your and your clients) to use?

 What syntax is most likely to be used correctly / not to be mis-used?

9

There are syntax distinctions.
There are a side-effects distinctions.
There are a performance distinctions.

Vector v1, v2, v3, v4;
…
v4 = v1 + v2 + v3;

vs.
v4.assign(v1.add(v2.add(v3)));

vs.
v2.add(v3);
v1.add(v2);
v4.assign(v1);

CSE333, Winter 2021L13: C++ Heap

What Are the Distinctions?

10

v4.assign(v1.add(v2.add(v3)));

Vector Vector::add(const Vector &other) const
{

Vector result(x+other.x, y+other.y);
return result;

}

v2.add(v3);
v1.add(v2);

v4.assign(v1);

Vector& Vector::add(const Vector &other)
{

x += other.x;
y += other.y;
return *this;

}

v4 = v1 + v2 + v3;

Vector Vector::operator+(const Vector &other) const
{

Vector result(x+other.x, y+other.y);
return result;

}

…

Syntax

Semantics

function
call

infix
operator

object
update

temporary
object

creation

CSE333, Winter 2021L13: C++ Heap

Semantic Choice / Temporaries
 Being able to create compiler managed temporaries often leads to simpler,

cleaner, less drive-you-crazy code
 Vector w = x + y + z;

or
Vector w = x.add(y.add(z));

 For the compiler to deal with destruction, the temporaries cannot be pointers or
references, they must be objects

 Object creation/destruction can be expensive

11

temporary created

CSE333, Winter 2021L13: C++ Heap

Implementing Operator Overloading

 Can overload operators using member functions
 For binary operators, look at the class of the argument on the left

my_obj + 6
my_obj * your_obj

 Can overload operators using nonmember functions
MyClass& operator+(MyClass& o, int x)
{

o.set(o.get()+x);
return o;

}

12

CSE333, Winter 2021L13: C++ Heap

friend Functions

 A class can give a nonmember function (or class) access to its
nonpublic members by declaring it as a friend
 friend function is not a class member, but has access privileges as if it were
 friend functions are usually unnecessary if your class includes appropriate “getter”

public functions

 It is common to overload ostream insertion (<<) and istream extraction (>>)
 std::cout << “Point A: ” << pointA << “ Point B: “ << pointB << std::endl

 This isn’t the only way to get this effect in C++ though…

13

class Complex {
...
friend std::istream& operator>>(std::istream& in, Complex& a);
...

};

std::istream& operator>>(std::istream& in, Complex& a) {
...

}

CSE333, Winter 2021L13: C++ Heap

Lecture Outline

 Class Details
 Filling in some gaps from last time

 Using the Heap
 new / delete / delete[]

14

CSE333, Winter 2021L13: C++ Heap

nullptr (as of C++11)

 In C we used NULL to be a special pointer value
 Used to indicate errors

 Dereferencing NULL is a run-time error

 NULL is 0 as an int, false as a Boolean

 NULL is typically a void*

 In C++, we have nullptr
 It’s a pointer type

 It will implicitly convert to every other pointer type

 It will resist becoming an integer

15

CSE333, Winter 2021L13: C++ Heap

new/delete

 To allocate on the heap in C++, you use the new keyword
instead of malloc() from stdlib.h
 You can use new to allocate an object (e.g. new Point)

• Will execute appropriate constructor as part of object allocate/create

 You can use new to allocate a primitive type (e.g. new int)

 To deallocate a heap-allocated object or primitive, use the
delete keyword instead of free() from stdlib.h
 Don’t mix and match!

• Never free() something allocated with new

• Never delete something allocated with malloc()

16

CSE333, Winter 2021L13: C++ Heap

new/delete Example
#include "Point.h"

int main() {
Point* x = new Point(1, 2);
int* y = new int(3);

std::cout << “Point: " << *x << std:: endl;
std:: cout << “int: " << *y << std:: endl;

delete x;
delete y;

return 0;
}

17

CSE333, Winter 2021L13: C++ Heap

Dynamically Allocated Arrays

 To dynamically allocate an array:
 Default initialize:

 To dynamically deallocate an array:
 Use delete[] name;

 It is an incorrect to use “delete name;” on an array
• The compiler probably won’t catch this, though (!) because it can’t

always tell if name* was allocated with new type[size];
or new type;

– Especially inside a function where a pointer parameter could point to a
single item or an array and there’s no way to tell which!

• Result of wrong delete is undefined behavior

type* name = new type[size];

delete[] name;

18

CSE333, Winter 2021L13: C++ Heap

Arrays Example (primitive)
#include "Point.h"

int main() {
int stack_int;
int* heap_int = new int;
int* heap_init_int = new int(12);

int stack_arr[10];
int* heap_arr = new int[10];
int* heap_init_arr = new int[10](); // uncommon usage
int* heap_init_error = new int[10](12); // bad syntax

...

delete heap_int; //
delete heap_init_int; //
delete heap_arr; //
delete[] heap_init_arr; //

return 0;
}

19

ok

ok
error – must be delete[]
ok

CSE333, Winter 2021L13: C++ Heap

Arrays Example (class objects)
#include "Point.h"

int main() {
...

Point stack_point(1, 2);
Point* heap_point = new Point(1, 2);

Point* err_pt_arr = new Point[10];// bug-no Point() ctr

Point* err2_pt_arr = new Point[10](1,2); // bad syntax
...

delete heap_point;

...

return 0;
}

20

CSE333, Winter 2021L13: C++ Heap

malloc vs. new
malloc() new

What is it? a function an operator or keyword

How often used (in C)? often never

How often used (in C++)? rarely often

Allocates Memory bytes arrays, structs, objects,
primitives

Calls Constructor No Yes

Returns a void*
(should be cast)

appropriate pointer type
(doesn’t need a cast)

When out of memory returns NULL throws an exception

Deallocation free() delete or delete[]

21

