
CSE333, Winter 2021L11: References, Const, Classes

C++ References, Const, Classes
CSE 333 Winter 2021
C++ References, Const, Classes
CSE 333 Winter 2021

Instructor: John Zahorjan

Teaching Assistants:

Matthew Arnold Nonthakit Chaiwong Jacob Cohen

Elizabeth Haker Henry Hung Chase Lee

Leo Liao Tim Mandzyuk Benjamin Shmidt

Guramrit Singh

CSE333, Winter 2021L11: References, Const, Classes

Lecture Outline

 C++ References

 const in C++

 C++ Classes Intro

2

CSE333, Winter 2021L11: References, Const, Classes

Pointers Reminder

 A pointer is a variable containing an address
 Modifying the pointer doesn’t modify what it points to, but you

can access/modify what it points to by dereferencing

 These work the same in C and C++

int main(int argc, char** argv) {
int x = 5, y = 10;
int* z = &x;

*z += 1;
x += 1;

z = &y;
*z += 1;

return EXIT_SUCCESS;
}

pointer.cc

x 5

y 10

z

Note: Arrow points
to next instruction.

3

CSE333, Winter 2021L11: References, Const, Classes

Pointers Reminder

 A pointer is a variable containing an address
 Modifying the pointer doesn’t modify what it points to, but you

can access/modify what it points to by dereferencing

 These work the same in C and C++

int main(int argc, char** argv) {
int x = 5, y = 10;
int* z = &x;

*z += 1;
x += 1;

z = &y;
*z += 1;

return EXIT_SUCCESS;
}

pointer.cc

x 5

y 10

z 0x7fff…a4

Note: Arrow points
to next instruction.

4

CSE333, Winter 2021L11: References, Const, Classes

Pointers Reminder

 A pointer is a variable containing an address
 Modifying the pointer doesn’t modify what it points to, but you

can access/modify what it points to by dereferencing

 These work the same in C and C++

int main(int argc, char** argv) {
int x = 5, y = 10;
int* z = &x;

*z += 1; // sets x to 6
x += 1;

z = &y;
*z += 1;

return EXIT_SUCCESS;
}

pointer.cc

x 6

y 10

z 0x7fff…a4

Note: Arrow points
to next instruction.

5

CSE333, Winter 2021L11: References, Const, Classes

Pointers Reminder

 A pointer is a variable containing an address
 Modifying the pointer doesn’t modify what it points to, but you

can access/modify what it points to by dereferencing

 These work the same in C and C++

int main(int argc, char** argv) {
int x = 5, y = 10;
int* z = &x;

*z += 1; // sets x to 6
x += 1; // sets x (and *z) to 7

z = &y;
*z += 1;

return EXIT_SUCCESS;
}

pointer.cc

x 7

y 10

z 0x7fff…a4

Note: Arrow points
to next instruction.

6

CSE333, Winter 2021L11: References, Const, Classes

Pointers Reminder

 A pointer is a variable containing an address
 Modifying the pointer doesn’t modify what it points to, but you

can access/modify what it points to by dereferencing

 These work the same in C and C++

int main(int argc, char** argv) {
int x = 5, y = 10;
int* z = &x;

*z += 1; // sets x to 6
x += 1; // sets x (and *z) to 7

z = &y; // sets z to the address of y
*z += 1;

return EXIT_SUCCESS;
}

pointer.cc

x 7

y 10

z 0x7fff…a0

Note: Arrow points
to next instruction.

7

CSE333, Winter 2021L11: References, Const, Classes

Pointers Reminder

 A pointer is a variable containing an address
 Modifying the pointer doesn’t modify what it points to, but you

can access/modify what it points to by dereferencing

 These work the same in C and C++

int main(int argc, char** argv) {
int x = 5, y = 10;
int* z = &x;

*z += 1; // sets x to 6
x += 1; // sets x (and *z) to 7

z = &y; // sets z to the address of y
*z += 1; // sets y (and *z) to 11

return EXIT_SUCCESS;
}

pointer.cc

x 7

y 11

z 0x7fff…a0

Note: Arrow points
to next instruction.

8

CSE333, Winter 2021L11: References, Const, Classes

References

 A reference is an alias for another variable
 Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

 Introduced in C++ as part of the language

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x;

z += 1;
x += 1;

z = y;
z += 1;

return EXIT_SUCCESS;
}

reference.cc

x 5

y 10

Note: Arrow points
to next instruction.

9

CSE333, Winter 2021L11: References, Const, Classes

References

 A reference is an alias for another variable
 Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

 Introduced in C++ as part of the language

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x; // binds the name "z" to x

z += 1;
x += 1;

z = y;
z += 1;

return EXIT_SUCCESS;
}

reference.cc

x, z 5

y 10

Note: Arrow points
to next instruction.

10

CSE333, Winter 2021L11: References, Const, Classes

References

 A reference is an alias for another variable
 Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

 Introduced in C++ as part of the language

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x; // binds the name "z" to x

z += 1; // sets z (and x) to 6
x += 1;

z = y;
z += 1;

return EXIT_SUCCESS;
}

reference.cc

x, z 6

y 10

Note: Arrow points
to next instruction.

11

CSE333, Winter 2021L11: References, Const, Classes

References

 A reference is an alias for another variable
 Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

 Introduced in C++ as part of the language

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x; // binds the name "z" to x

z += 1; // sets z (and x) to 6
x += 1; // sets x (and z) to 7

z = y;
z += 1;

return EXIT_SUCCESS;
}

reference.cc

x, z 7

y 10

Note: Arrow points
to next instruction.

12

CSE333, Winter 2021L11: References, Const, Classes

References

 A reference is an alias for another variable
 Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

 Introduced in C++ as part of the language

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x; // binds the name "z" to x

z += 1; // sets z (and x) to 6
x += 1; // sets x (and z) to 7

z = y; // sets z (and x) to the value of y
z += 1;

return EXIT_SUCCESS;
}

reference.cc

x, z 10

y 10

Note: Arrow points
to next instruction.

13

CSE333, Winter 2021L11: References, Const, Classes

References

 A reference is an alias for another variable
 Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

 Introduced in C++ as part of the language

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x; // binds the name "z" to x

z += 1; // sets z (and x) to 6
x += 1; // sets x (and z) to 7

z = y; // sets z (and x) to the value of y
z += 1; // sets z (and x) to 11

return EXIT_SUCCESS;
}

reference.cc

x, z 11

y 10

Note: Arrow points
to next instruction.

14

CSE333, Winter 2021L11: References, Const, Classes

References

 There is no way to change what a reference is an alias for

 That means a reference must always be initialized when
declared
 int& x; // is an error

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x; // binds the name "z" to x

z = y; // sets x to 10
z = &y; // sets x to the address of y!
&z = y; // compile time error

return EXIT_SUCCESS;
}

15

CSE333, Winter 2021L11: References, Const, Classes

Using References: Pass-By-Reference

 C++ allows you to use real pass-by-reference
 Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

swap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT_SUCCESS;

}

(main) a 5

(main) b 10

Note: Arrow points
to next instruction.

16

CSE333, Winter 2021L11: References, Const, Classes

Pass-By-Reference

 C++ allows you to use real pass-by-reference
 Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

swap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT_SUCCESS;

}

(main) a
(swap) x

5

(main) b
(swap) y

10

Note: Arrow points
to next instruction.

(swap) tmp

17

CSE333, Winter 2021L11: References, Const, Classes

Pass-By-Reference

 C++ allows you to use real pass-by-reference
 Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

swap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT_SUCCESS;

}

(main) a
(swap) x

5

(main) b
(swap) y

10

Note: Arrow points
to next instruction.

(swap) tmp 5

18

CSE333, Winter 2021L11: References, Const, Classes

Pass-By-Reference

 C++ allows you to use real pass-by-reference
 Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

swap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT_SUCCESS;

}

(main) a
(swap) x

10

(main) b
(swap) y

10

Note: Arrow points
to next instruction.

(swap) tmp 5

19

CSE333, Winter 2021L11: References, Const, Classes

Pass-By-Reference

 C++ allows you to use “real” pass-by-reference
 Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

swap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT_SUCCESS;

}

(main) a
(swap) x

10

(main) b
(swap) y

5

Note: Arrow points
to next instruction.

(swap) tmp 5

20

CSE333, Winter 2021L11: References, Const, Classes

Pass-By-Reference

 C++ allows you to use real pass-by-reference
 Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

swap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT_SUCCESS;

}

(main) a 10

(main) b 5

Note: Arrow points
to next instruction.

21

CSE333, Winter 2021L11: References, Const, Classes

Return-by-Reference

 C and C++ normally “return by value”
 The thing the caller gets back is a copy of the thing the callee

returned

 Returning a reference gives caller access to the thing
returned

 Example:
 std::vector<int> my_vec{0,1,2,3,4};

my_vec.at(3) = -3;
for (auto & i : my_vec) std::cout << i << “ “;

 Output: 0 1 2 -3 4

22

CSE333, Winter 2021L11: References, Const, Classes

Pass-By-Reference / Return-By-Reference

 Why would you use them?
 Performance

• It’s too expensive to copy the thing being passed or returned
– In C, you have to copy potentially a lot of bytes

– In C++, additionally, if you’re communicating an object, you have to create
the object, which means you have to run a constructor

 Functionality
• You want to give the callee / caller access to the thing passed /

returned
– Including output parameters

23

CSE333, Winter 2021L11: References, Const, Classes

Lecture Outline

 C++ References

 const in C++

 C++ Classes Intro

24

CSE333, Winter 2021L11: References, Const, Classes

const Keyword

 const: this “cannot be” changed/mutated
 Used much more in C++ than in C

 Signal of intent to compiler; meaningless at hardware level
• Results in compile-time errors

void BrokenPrintSquare(const int& i) {
i = i*i; // compiler error here!
std::cout << i << std::endl;

}

int main(int argc, char** argv) {
int j = 2;
BrokenPrintSquare(j);
return EXIT_SUCCESS;

}

25

CSE333, Winter 2021L11: References, Const, Classes

Pointers and const

 There are two natural assignments involving pointers:
1) You can change the value of the pointer (what it points to)

2) You can change the thing the pointer points to (via dereference)

 const can be applied to either/both of these!

 Just like the ‘*’ used to declare a pointer can go in a few
places, so can const

 Tip: read variable declaration from right-to-left
 Tip: write “const” so that reading right to left makes sense

26

CSE333, Winter 2021L11: References, Const, Classes

const and Pointers

 The syntax with pointers is confusing:

const int y = 6; // can’t assign to y after this
//int const y = 6; // exactly the same as const int y = 6

y++; // compiler error

const int *z = &y; // pointer to a (const int)
//int const *z = &y; // exactly the same as “const int *”

*z += 1; // compiler error
z++; // doesn’t cause a compile-time error

int * const w = &x; // (const pointer) to a (variable int)
*w += 1; // ok
w++; // compiler error

const int *const v = &x; // (const pointer) to a (const int)
//int const *const v = &x; // exactly the same

*v += 1; // compiler error
v++; // compiler error

constmadness.cc 27

CSE333, Winter 2021L11: References, Const, Classes

const and Pointers

 int const * * const p = y;

 Which of the following aren’t errors?
 p = 0;

 *p = 0;

 **p = 0;

 ***p = 0;

 &p = 0;

 p = &0;

28

CSE333, Winter 2021L11: References, Const, Classes

const and Pointers

 int const * * const p = &y;

 Which of the following aren’t errors?
 p = 0;

 *p = 0;

 **p = 0;

 ***p = 0;

 &p = 0;

 p = &0;

29

CSE333, Winter 2021L11: References, Const, Classes

Bonus Examples

 Which of the following lines can compile without error?

30

const int & p = y;
int const & q = y;
int & const r = y;
p = 0;
q = 0;
r = 0;

CSE333, Winter 2021L11: References, Const, Classes

Bonus Examples

 Which of the following lines can compile without error?

31

const int & p = y;
int const & q = y;
int & const r = y;
p = 0;
q = 0;
r = 0;

CSE333, Winter 2021L11: References, Const, Classes

const Parameters

 If a method defintely does not modify a parameter, it
should specify it as const
 That may allow the compiler to perform some optimizations in

the callers that wouldn’t be legal otherwise

 Also, sometimes it’s required...

32

int my_strlen(char *p_string)
{

char *q;
if (p_string == nullptr)

return 0;
for (q=p_string; *q; q++)

;
return q-p_string;

}

Should be const

CSE333, Winter 2021L11: References, Const, Classes

const Parameters

33

int my_strlen(char *p_string)
{

char *q;
if (p_string == nullptr)

return 0;
for (q=p; *q; q++)

;
return q-p;

}

int main(int argc, char *argv[])
{

for (int i=0; i<argc; i++)
printf("'%s' -> %d\n", argv[i], my_strlen(argv[i]));

return EXIT_SUCCESS;
}

[attu2] > ./a.out one two three
'./a.out' -> 7
'one' -> 3
'two' -> 3
'three' -> 5

CSE333, Winter 2021L11: References, Const, Classes

const Parameters

34

int my_strlen(char *p_string)
{

char *q;
if (p_string == nullptr)

return 0;
for (q=p; *q; q++)

;
return q-p;

}

int main(int argc, char *argv[])
{

int len = my_strlen(“cse333”);
return EXIT_SUCCESS;

}

$ g++ -std=c++17 -Wall -g test.cc
test.cc: In function ‘int main(int, char**)’:
test.cc:15:23: warning: ISO C++ forbids converting a string constant to ‘char*’ [-Wwrite-strings]

15 | int len = my_strlen("cse333");
| ^~~~~~~~

[attu2] ~/tmp> ./a.out
6

CSE333, Winter 2021L11: References, Const, Classes

const Parameter Troubles

 The issue occurs much more frequently than you likely
expect

 Once some routine says something is const, the compiler
wants to keep it const

 If you don’t say const, the caller will have issues
 That caller can be you...

35

CSE333, Winter 2021L11: References, Const, Classes

Lecture Outline

 C++ References

 const in C++

 C++ Classes Intro

36

CSE333, Winter 2021L11: References, Const, Classes

C++ class declarations and definitions

 Code for C++ classes (typically) goes in two files

 The .h file declares the class
 lists instance variables and method names, but not method

implementations

 including the “private” portions

 The .cc file defines the methods
 Gives code for them

 Usually...

 If the class name is ABCD, the files are usually named ABCD.h
and ABCD.cc
 but it’s only convention

37

CSE333, Winter 2021L11: References, Const, Classes

Classes – the .h file

 The class declaration goes in a .h file

 Members can be functions (methods) or data (variables)

 The file is usually called MyClass.h

 Don’t forget the trailing semi-colon!

38

class MyClass {
public:
// public member declarations go here
int ExampleMethod(int x, int y);

private:
// private member declarations go here

};

CSE333, Winter 2021L11: References, Const, Classes

Classes – the .cc file

 Class member function definitions go in the .cc file

 There is no compiler enforced relationship among the
names of the class, the .h file, and the .cc file
 You must give the method’s fully qualified name when defining it

MyClass::ExampleMethod

39

int MyClass::ExampleMethod(int x, int y, int z) {
// body statements

}

CSE333, Winter 2021L11: References, Const, Classes

Class .h and .cc files

 Client code must #include the .h file to use the class

 Private members must be included in the .h file
 They’re private in that the compiler won’t compile non-class code

that attempts to manipulate them

 So why expose private information to clients?
 Clients can perform one operation involving private instance

variables: object creation
• The variable declaration: vector<string> word_list;

 The compiler needs to know the size of the object so it can
allocate space for it (on the stack, say)

40

CSE333, Winter 2021L11: References, Const, Classes

Inlining
 Normally, a function call in the source code results in a

procedure call at runtime
 all the overheads associated with it

 Inlining is the idea of injecting the procedure’s code into
the caller’s code at compile time
 Avoids procedure call/return overhead at runtime

 Enables possible optimizations of code across the (logical)
procedure call/return boundaries

 To inline, a procedure the compiler must have access to
the procedure’s implementation when compiling a call to
it

41

CSE333, Winter 2021L11: References, Const, Classes

Inlining

 C++ is very concerned about performance

 It has a few ways the programmer can use to encourage
the compiler to inline a method
 But the compiler knows best – it may, or may not, inline

 The simplest of them is to simply provide the method’s
definition in the .h file (and not in the .cc file)
 This is often done for particularly trivial methods, like getters

42

CSE333, Winter 2021L11: References, Const, Classes

Class Definition (.h file)

43

#ifndef _POINT_H_
#define _POINT_H_

class Point {
public:
Point(const int x, const int y); // constructor
int get_x() const { return x_; } // potential inline
int get_y() const { return y_; } // potential inline
double Distance(const Point& p) const;
void SetLocation(const int x, const int y;

private:
int x_; // data member
int y_; // data member

}; // class Point

#endif // _POINT_H_

Point.h

Providing method bodies enables inlining

Cannot be inlined

CSE333, Winter 2021L11: References, Const, Classes

Class Definition (.h file)

44

#ifndef _POINT_H_
#define _POINT_H_

class Point {
public:
Point(const int x, const int y); // constructor
int get_x() const { return x_; } // potential inline
int get_y() const { return y_; } // potential inline
double Distance(const Point& p) const;
void SetLocation(const int x, const int y;

private:
int x_; // data member
int y_; // data member

}; // class Point

#endif // _POINT_H_

Point.h

Promises that the method doesn’t modify the object.
Useful when compiling caller for optimization reasons.

CSE333, Winter 2021L11: References, Const, Classes

The.cc file - Class Member Definitions

45

#include <cmath>
#include "Point.h"

Point::Point(const int x, const int y) {
x_ = x;
this->y_ = y; // "this->" is optional unless name conflicts

}

double Point::Distance(const Point& p) const {
// We can access p’s x_ and y_ variables either through the
// get_x(), get_y() accessor functions or the x_, y_ private
// member variables directly, since we’re in a member
// function of the same class.
double distance = (x_ - p.get_x()) * (x_ - p.get_x());
distance += (y_ - p.y_) * (y_ - p.y_);
return sqrt(distance);

}

void Point::SetLocation(const int x, const int y) {
x_ = x;
y_ = y;

}

Point.cc

CSE333, Winter 2021L11: References, Const, Classes

Class Usage (.cc file)

46

#include <iostream>
#include "Point.h"

int main(int argc, char** argv) {
Point p1(1, 2); // allocate a new Point on the Stack
Point p2(4, 6); // allocate a new Point on the Stack

std::cout << "p1 is: (" << p1.get_x() << ", "
<< p1.get_y() << ")\n"
<< "p2 is: (" << p2.get_x() << ", ";
<< p2.get_y() << ")\n"
<< "dist : " << p1.Distance(p2) << std::endl;

return 0;
}

usepoint.cc

