WA UNIVERSITY of WASHINGTON

L11: References, Const, Classes

C++ References, Const, Classes
CSE 333 Winter 2021

Instructor: John Zahorjan

Teaching Assistants:

Matthew Arnold Nonthakit Chaiwong Jacob Cohen
Elizabeth Haker Henry Hung Chase Lee
Leo Liao Tim Mandzyuk Benjamin Shmidt

Guramrit Singh

CSE333, Winter 2021

WA UNIVERSITY of WASHINGTON

Lecture Outline

+ C++ References
&« constin C++

« C++ Classes Intro

L11: References, Const, Classes

CSE333, Winter 2021

WA UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2021

Note: Arrow points

Pointers Reminder to next instruction.

+~ A pointer is a variable containing an address

" Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main (int argc, char** argv) {
int x = 5, y = 10; X 5
P int* z = &X;

*z += 1;

x += 1; y 10
z = &y,

*z += 1;

return EXIT SUCCRESS;

L J
pointer.cc

WA UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2021

Note: Arrow points

Pointers Reminder to next instruction.

+~ A pointer is a variable containing an address

" Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main (int argc, char** argv) { h
int x = 5, y = 10; X 5
int* z = &x;
— *z += 1;
x += 1; v 10
z = &y,
*z += 1;
return EXIT SUCCESS; z | 0x7£0f. a4
}
- J

pointer.cc

WA UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2021

Note: Arrow points

Pointers Reminder to next instruction.

+~ A pointer is a variable containing an address

" Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main (int argc, char** argv) { R
int x = 5, y = 10; % 6
int* z = &x;
*z += 1; /J/ sets x to 6

— X += 1; > 10
z = &y,
*z7 += :I_,' \
return EXIT SUCCESS; Z 027ﬂ5fma4
}
\ J

pointer.cc

WA UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2021

Note: Arrow points

Pointers Reminder to next instruction.

+~ A pointer is a variable containing an address

" Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main (int argc, char** argv) { h
int x = 5, y = 10; % ~
int* z = &x;
*z += 1; // sets x to 6
x += 1; // sets x (and *z) to 7 v 10

—) z = &y;
*z7 += :I_,' \
return EXIT SUCCESS; z |o0x78dt. a4
}
\ J

pointer.cc

W UNIVERSITY of WASHINGTON L11: References, Const, Classes

Pointers Reminder

+~ A pointer is a variable containing an address

CSE333, Winter 2021

Note: Arrow points
to next instruction.

" Modifying the pointer doesn’t modify what it points to, but you

can access/modify what it points to by dereferencing

" These work the same in C and C++

10

Ox?ﬂgfmao

(int main (int argc, char** argv) { b
int x =5, y = 10;
int* z = &x;
*z += 1; // sets x to 6
X += 1; // sets x (and *z) to 7
z = &y; // sets z to the address of y
q*z d= :]_;
return EXIT SUCCRESS;
}
- y

pointer.cc

WA UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2021

Note: Arrow points

Pointers Reminder to next instruction.

+~ A pointer is a variable containing an address

" Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main (int argc, char** argv) {
int x =5, y = 10; X 7
int* z = &x;

*z += 1; // sets x to 6
X += 1; // sets x (and *z) to 7

z = &y; // sets z to the address of y
Ly

*z += // sets y (and *z) to 11 4’——\\
z Ox?ﬂgfmao

) rcturn EXIT SUCCESS;
}

L J
pointer.cc

WA UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2021

Note: Arrow points

Refe rences to next instruction.

«» A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

" |ntroduced in C++ as part of the language

(int main (int argc, char** argv) {
int x = 5, y = 10; X 5
) int& z = X;

7 o= -

x += 1; y 10
= Y
+= 1;

return EXIT SUCCRESS;

_ Y,
reference.cc

WA UNIVERSITY of WASHINGTON

References

«» A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

L11: References, Const, Classes

" |ntroduced in C++ as part of the language

(int main (int argc, char** argv) { B
int x = 5, y = 10;
int& z = x; // binds the name "z" to x
—> z = 1;
x += 1;
= Y
+= 1;
return EXIT SUCCRESS;
}
_ J

CSE333, Winter 2021

Note: Arrow points
to next instruction.

10

reference.cc

10

WA UNIVERSITY of WASHINGTON

References

«» A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

L11: References, Const, Classes

" |ntroduced in C++ as part of the language

(int main (int argc, char** argv) { b
int x = 5, y = 10;
int& z = x; // binds the name "z" to x
z += 1; // sets z (and x) to 6
— x += 1;
= Y
+= 1;
return EXIT SUCCRESS;
}
_ J

CSE333, Winter 2021

Note: Arrow points
to next instruction.

10

reference.cc

11

WA UNIVERSITY of WASHINGTON

References

L11: References, Const, Classes

CSE333, Winter 2021

Note: Arrow points
to next instruction.

«» A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

" |ntroduced in C++ as part of the language

. . .
int main(int argc, char** argv) {

int x = 5, y = 10;
int& z = x; // binds the name
z += 1; // sets z (and x) to 6

x += 1; // sets x (and z) to 7
qZ :y;
z += 1;

return EXIT SUCCRESS;

"z" to x

Y 10

J

reference.cc

12

WA UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2021

Note: Arrow points

Refe rences to next instruction.

«» A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable
- Mutating a reference is mutating the aliased variable

" |ntroduced in C++ as part of the language

(int main (int argc, char** argv) { b
int x = 5, y = 10; X, Z 10
int& z = x; // binds the name "z" to x
z += 1; // sets z (and x) to 6
x += 1; // sets x (and z) to 7 y 10
z =1vy; // sets z (and x) to the value of y

— 7 += 1;
return EXIT SUCCRESS;
}
- J

reference.cc
13

WA UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2021

Note: Arrow points

Refe rences to next instruction.

«» A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

" |ntroduced in C++ as part of the language

(int main (int argc, char** argv) { b
int x = 5, y = 10; X, Z 11
int& z = x; // binds the name "z" to x
z += 1; // sets z (and x) to 6
x += 1; // sets x (and z) to 7 y 10
z =1vy; // sets z (and x) to the value of y
z += 1; // sets z (and x) to 11

P rcturn EXIT SUCCESS;
}
- J

reference.cc
14

L11: References, Const, Classes

CSE333, Winter 2021

WA UNIVERSITY of WASHINGTON

References

+~ There is no way to change what a reference is an alias for

.

}

int x = 5, y
int& z = x;

z = VY; //
z = &y; //
sz = vy; //

return EXIT

(. c]
int main(int argc, char** argv) {

= 10;
// binds the name "z" to x

sets x to 10
sets x to the address of y!
compile time error

SUCCESS;

\

+» That means a reference must always be initialized when
declared

" int& x; //is an error

15

WA UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2021

Using References: Pass-By-Reference

+» C++ allows you to use real pass-by-reference

" Client passes in an argument with normal syntax
- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

(void swap (1int& x, inté& y) { B
int tmp = x; _
— - (main) a 5
X = y;
y = tmp;
}
int main(int argc, char** argv) { (main) b 10

int a = 5, b = 10;

—tp swap (a, Db);
cout << "a: " <K<K a << "; b: " << b << endl;
return EXIT SUCCESS;

}

Note: Arrow points
to next instruction.

.

16

WA UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2021

Note: Arrow points

Pass-By-Reference to next instruction.

+» C++ allows you to use real pass-by-reference

" Client passes in an argument with normal syntax
- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

(void swap (inté& x, inté& y) { R
—) int tmp = X; _
X = y; (main) a 5
y = tmp; (swap) x
}
int main(int argc, char** argv) { (main) b 10
int a = 5, b = 10; (swap) y
swap (a, b):;
cout << "a: " << a << "; b: " << b << endl; (swap) tmp
return EXIT SUCCESS;
\} J

17

WA UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2021

Note: Arrow points

Pass-By-Reference to next instruction.

+» C++ allows you to use real pass-by-reference

" Client passes in an argument with normal syntax
- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

(void swap (inté& x, inté& y) { R
int tmp = x; :
— X = V; (main) a s

y = tmp; (swap) x

}

int main(int argc, char** argv) { (main) b 10
int a = 5, b = 10; (swap) ¥
swap (a, b):;
cout << "a: " << a << "; b: " << b << endl; (swap) tmp 5
return EXIT SUCCESS;

}

.

18

WA UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2021

Note: Arrow points

Pass-By-Reference to next instruction.

+» C++ allows you to use real pass-by-reference

" Client passes in an argument with normal syntax
- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

(void swap (inté& x, inté& y) { R
int tmp = x; :
x = y; (main) a 10
—P v = tmp; (swap) x

}

int main(int argc, char** argv) { (main) b 10
int a = 5, b = 10; (swap) y
swap (a, b):;
cout << "a: " << a << "; b: " << b << endl; (swap) tmp S
return EXIT SUCCESS;

}

.

19

WA UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2021

Note: Arrow points

Pass-By-Reference to next instruction.

IH

+» C++ allows you to use “real” pass-by-reference
" Client passes in an argument with normal syntax
- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

(void swap (inté& x, inté& y) { R
int tmp = x; :
x = y; (main) a 10
y = tmp; (swap) x
#

int main(int argc, char** argv) { (main) b 5
int a = 5, b = 10; (swap) y
swap (a, b):;
cout << "a: " << a << "; b: " << b << endl; (swap) tmp S
return EXIT SUCCESS;

}

.

20

WA UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2021

Note: Arrow points

Pass-By-Reference to next instruction.

+» C++ allows you to use real pass-by-reference

" Client passes in an argument with normal syntax
- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

(void swap (inté& x, inté& y) { B

int tmp = x;
X = y;
y = tmp;

(main) a 10

}

(main) b 5

int main(int argc, char** argv) {
int a = 5, b = 10;

swap (a, b):;
m——p CcOUL << "a: " <K a << "; b: " <K<K b << endl;
return EXIT SUCCESS;

\ b

21

WA UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2021

Return-by-Reference

% Cand C++ normally “return by value”

" The thing the caller gets back is a copy of the thing the callee
returned

+~ Returning a reference gives caller access to the thing
returned

+» Example:

= std::vector<int> my vec{0,1,2,3,4};
my_vec.at(3) =-3;
for (auto & i : my _vec) std::cout<<i<<“?

= Output:012-34

22

WA UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2021

Pass-By-Reference / Return-By-Reference

+» Why would you use them?

" Performance

- It’s too expensive to copy the thing being passed or returned
— In C, you have to copy potentially a lot of bytes

— In C++, additionally, if you’re communicating an object, you have to create
the object, which means you have to run a constructor

" Functionality

- You want to give the callee / caller access to the thing passed /
returned

— Including output parameters

23

WA UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2021

Lecture Outline

«» C++ References
+ constin C++

« C++ Classes Intro

24

WA UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2021

const Keyword

% const: this “cannot be” changed/mutated
= Used much more in C++ thanin C

= Signal of intent to compiler; meaningless at hardware level

- Results in compile-time errors

(void BrokenPrintSquare (const inté& 1) {)

i = 1i*i; // compiler error here!
std::cout << 1 << std::endl;
}

int main(int argc, char** argv) {
int J = 2;
BrokenPrintSquare (]) ;
return EXIT SUCCESS;

}

\. J

25

WA UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2021

Pointers and const

+ There are two natural assignments involving pointers:
1) You can change the value of the pointer (what it points to)

2) You can change the thing the pointer points to (via dereference)

%+ const can be applied to either/both of these!

+ Just like the “*’ used to declare a pointer can go in a few
places, so can const

% Tip: read variable declaration from right-to-left

= Tip: write “const” so that reading right to left makes sense

26

WA UNIVERSITY of WASHINGTON

L11: References, Const, Classes

const and Pointers

+» The syntax with pointers is confusing:

CSE333, Winter 2021

7

const int y = 6;
//int const y = 6;
y++;

const int *z = &y;
//int const *z = &y,
*z += 1;

Z++;

int * const w = &X;
*w o += 1;

wt++;

const int *const v =

//int const *const v
*v += 1;
v++;

//
//
//

//
//
//
//

//
//
//

&X;

&X;
//
//

can’t assign to y after this
exactly the same as const int y = 6
compiler error

pointer to a (const int)

exactly the same as “const int *”
compiler error

doesn’t cause a compile-time error

(const pointer) to a (variable int)
ok
compililer error

// (const pointer) to a (const int)
// exactly the same

compiler error

compililer error

J

constmadness.cc

WA UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2021

const and Pointers

% intconst * * constp =v;

+~ Which of the following aren’t errors?

28

WA UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2021

const and Pointers

% int const * * const p = &y;

+ Which of the following aren’t errors?

29

WA UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2021

Bonus Examples

+» Which of the following lines can compile without error?

constint&p=y;
intconst& q=y;
int & const r =vj;

p=0;
q=y,
r=0;

30

WA UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2021

Bonus Examples

+ Which of the following lines can compile without error?

constint&p=y;
intconst & q=y;
int & const r =v;

p=0;
q=y,
r=0;

31

WA UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2021

const Parameters

+ If a method defintely does not modify a parameter, it
should specify it as const

" That may allow the compiler to perform some optimizations in
the callers that wouldn’t be legal otherwise

= Also, sometimes it’s required...

int my_strlen(char *p_string)

{
char *q;

if (p_string == nullptr) "~ Should be const

return O;
for (g=p_string; *q; q++)

Vi

return g-p_string;

32

WA UNIVERSITY of WASHINGTON

L11: References, Const, Classes

const Parameters

int my_strlen(char *p_string)
{
char *q;
if (p_string == nullptr)
return O;
for ((a=p; *q; q++)

return q-p;

CSE333, Winter 2021

int main(int argc, char *argv]])
{
for (int i=0; i<argc; i++)
printf("'%s' -> %d\n", argv[i], my_strlen(argvlil));
return EXIT_SUCCESS;
}

'Ja.out' ->7
‘one' -> 3
'two' -> 3
'three' -> 5

[attu2] > ./a.out one two three

33

WA UNIVERSITY of WASHINGTON

L11: References, Const, Classes

const Parameters

CSE333, Winter 2021

{

}

int my_strlen(char *p_string)

char *q;
if (p_string == nullptr)
return O;

int main(int argc, char *argv|[])

{

}

int len = my_strlen(“cse333”);
return EXIT_SUCCESS;

for (g=p; *q; q++)

return q-p;

$ g++ -std=c++17 -Wall -g test.cc

test.cc: In function ‘int main(int, char**)":

test.cc:15:23: warning: ISO C++ forbids converting a string constant to ‘char*’ [-Wwrite-strings]

15 | intlen=my_strlen("cse333");
| A
[attu2] ~/tmp> ./a.out
6

34

W UNIVERSITY of WASHINGTON L11: References, Const, Classes

CSE333, Winter 2021

const Parameter Troubles

+» The issue occurs much more frequently than you likely
expect

+» Once some routine says something is const, the compiler
wants to keep it const

+ If you don’t say const, the caller will have issues

" That caller can be you...

35

WA UNIVERSITY of WASHINGTON

Lecture Outline

«» C++ References
&« constin C++

+ C++ Classes Intro

L11: References, Const, Classes

CSE333, Winter 2021

36

CSE333, Winter 2021

W UNIVERSITY of WASHINGTON L11: References, Const, Classes

C++ class declarations and definitions

» Code for C++ classes (typically) goes in two files

» The .h file declares the class
= |ists instance variables and method names, but not method
implementations
® including the “private” portions

+ The .cc file defines the methods

" Gives code for them

Usually...

If the class name is ABCD, the files are usually named ABCD.h
and ABCD.cc

= butit’s only convention

37

WA UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2021

Classes — the .h file

+~ The class declaration goes in a .h file

(class MyClass {
public:
// public member declarations go here
int ExampleMethod(int x, int y),

private:
// private member declarations go here

b g

\. J

" Members can be functions (methods) or data (variables)
" The file is usually called MyClass.h

= Don’t forget the trailing semi-colon!

38

WA UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2021

Classes — the .cc file

+» Class member function definitions go in the .cc file

int MyClass::ExampleMethod (int x, int y, int z) {
// body statements
}

+» There is no compiler enforced relationship among the
names of the class, the .h file, and the .cc file

" You must give the method’s fully qualified name when defining it
MyClass: :ExampleMethod

39

WA UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2021

Class .h and .cc files

« Client code must #include the .h file to use the class

« Private members must be included in the .h file

" They're private in that the compiler won’t compile non-class code
that attempts to manipulate them

+ So why expose private information to clients?

= Clients can perform one operation involving private instance
variables: object creation
- The variable declaration: vector<string> word_list;

" The compiler needs to know the size of the object so it can
allocate space for it (on the stack, say)

40

WA UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2021

Inlining
+» Normally, a function call in the source code results in a
procedure call at runtime

= all the overheads associated with it

+ Inlining is the idea of injecting the procedure’s code into
the caller’s code at compile time
= Avoids procedure call/return overhead at runtime

" Enables possible optimizations of code across the (logical)
procedure call/return boundaries

+ Toinline, a procedure the compiler must have access to
the procedure’s implementation when compiling a call to
it

41

WA UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2021

Inlining

+» C++is very concerned about performance

+ It has a few ways the programmer can use to encourage
the compiler to inline a method

" But the compiler knows best — it may, or may not, inline

« The simplest of them is to simply provide the method’s
definition in the .h file (and not in the .ccfile)

" This is often done for particularly trivial methods, like getters

42

W UNIVERSITY of WASHINGTON L11: References, Const, Classes

Class Definition (. h file)

Point.h

[#ifndef POINT H

#define POINT H

Providing method bodies enables inlining

class Point {

void SetLocation (const int x,

private:
int x ; // data member
int y ; // data member
}; // class Point

#endif // POINT H
L _ _

public:
Point (const int x, const int y); // constructor
int get x() const { return x ; } // potential inline
int get y() const { return y ; } // potential inline

double Distance (const Pointé& p) consty;

const int y;

N

Cannot be inlined

N

CSE333, Winter 2021

43

WA UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2021

Class Definition (. h file)

[#ifndef POINT H
#define POINT H

Point.h

Promises that the method doesn’t modify the object.
Useful when compiling caller for optimization reasons.

class Point {

public:
Point (const int x, t int y); // constructor
int get x() cons eturn x ; } // potential inline

int get y() const/{ return y ; } // potential inline
double Distance (const Pointé& p) consty;
void SetLocation(const int x, const int y;

private:
int x ; // data member
int y ; // data member
}; // class Point

#endif // POINT H
_ - __)

44

WA UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2021

The . cc file - Class Member Definitions

Point.cc
(#include <cmath> h
#include "Point.h"
Point::Point (const int x, const int y) {
X = %;
this->y = vy; // "this->" is optional unless name conflicts

}

double Point::Distance(const Point& p) const {
// We can access p’s x and y variables either through the
// get x(), get y() accessor functions or the x , y private
// member variables directly, since we’re in a member
// function of the same class.
double distance = (x - p.get x()) * (x - p.get x());
distance += (y_ - p.y) * (y_ - p.v)7
return sqrt(distance);

}

void Point::SetLocation(const int x, const int y) {
X = X;
Y = ¥Yr

45

WA UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Winter 2021

Class Usage (. cc file)

usepoint.cc

\

(, \
#include <iostream>
#include "Point.h"

int main(int argc, char** argv) {
Point pl(l, 2); // allocate a new Point on the Stack
Point p2(4, 6); // allocate a new Point on the Stack

std::cout << "pl 1s: (" << pl.get x() << ", "
<< pl.get y() << ")\n"
<< "p2 1is: (" << p2.get x() << ", -
<< p2.get y() << ")\n"
<< "dist : " << pl.Distance (p2) << std::endl;

return 0;

46

