
CSE333, Winter 2021L11: References, Const, Classes

C++ References, Const, Classes
CSE 333 Winter 2021
C++ References, Const, Classes
CSE 333 Winter 2021

Instructor: John Zahorjan

Teaching Assistants:

Matthew Arnold Nonthakit Chaiwong Jacob Cohen

Elizabeth Haker Henry Hung Chase Lee

Leo Liao Tim Mandzyuk Benjamin Shmidt

Guramrit Singh

CSE333, Winter 2021L11: References, Const, Classes

Lecture Outline

 C++ References

 const in C++

 C++ Classes Intro

2

CSE333, Winter 2021L11: References, Const, Classes

Pointers Reminder

 A pointer is a variable containing an address
 Modifying the pointer doesn’t modify what it points to, but you

can access/modify what it points to by dereferencing

 These work the same in C and C++

int main(int argc, char** argv) {
int x = 5, y = 10;
int* z = &x;

*z += 1;
x += 1;

z = &y;
*z += 1;

return EXIT_SUCCESS;
}

pointer.cc

x 5

y 10

z

Note: Arrow points
to next instruction.

3

CSE333, Winter 2021L11: References, Const, Classes

Pointers Reminder

 A pointer is a variable containing an address
 Modifying the pointer doesn’t modify what it points to, but you

can access/modify what it points to by dereferencing

 These work the same in C and C++

int main(int argc, char** argv) {
int x = 5, y = 10;
int* z = &x;

*z += 1;
x += 1;

z = &y;
*z += 1;

return EXIT_SUCCESS;
}

pointer.cc

x 5

y 10

z 0x7fff…a4

Note: Arrow points
to next instruction.

4

CSE333, Winter 2021L11: References, Const, Classes

Pointers Reminder

 A pointer is a variable containing an address
 Modifying the pointer doesn’t modify what it points to, but you

can access/modify what it points to by dereferencing

 These work the same in C and C++

int main(int argc, char** argv) {
int x = 5, y = 10;
int* z = &x;

*z += 1; // sets x to 6
x += 1;

z = &y;
*z += 1;

return EXIT_SUCCESS;
}

pointer.cc

x 6

y 10

z 0x7fff…a4

Note: Arrow points
to next instruction.

5

CSE333, Winter 2021L11: References, Const, Classes

Pointers Reminder

 A pointer is a variable containing an address
 Modifying the pointer doesn’t modify what it points to, but you

can access/modify what it points to by dereferencing

 These work the same in C and C++

int main(int argc, char** argv) {
int x = 5, y = 10;
int* z = &x;

*z += 1; // sets x to 6
x += 1; // sets x (and *z) to 7

z = &y;
*z += 1;

return EXIT_SUCCESS;
}

pointer.cc

x 7

y 10

z 0x7fff…a4

Note: Arrow points
to next instruction.

6

CSE333, Winter 2021L11: References, Const, Classes

Pointers Reminder

 A pointer is a variable containing an address
 Modifying the pointer doesn’t modify what it points to, but you

can access/modify what it points to by dereferencing

 These work the same in C and C++

int main(int argc, char** argv) {
int x = 5, y = 10;
int* z = &x;

*z += 1; // sets x to 6
x += 1; // sets x (and *z) to 7

z = &y; // sets z to the address of y
*z += 1;

return EXIT_SUCCESS;
}

pointer.cc

x 7

y 10

z 0x7fff…a0

Note: Arrow points
to next instruction.

7

CSE333, Winter 2021L11: References, Const, Classes

Pointers Reminder

 A pointer is a variable containing an address
 Modifying the pointer doesn’t modify what it points to, but you

can access/modify what it points to by dereferencing

 These work the same in C and C++

int main(int argc, char** argv) {
int x = 5, y = 10;
int* z = &x;

*z += 1; // sets x to 6
x += 1; // sets x (and *z) to 7

z = &y; // sets z to the address of y
*z += 1; // sets y (and *z) to 11

return EXIT_SUCCESS;
}

pointer.cc

x 7

y 11

z 0x7fff…a0

Note: Arrow points
to next instruction.

8

CSE333, Winter 2021L11: References, Const, Classes

References

 A reference is an alias for another variable
 Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

 Introduced in C++ as part of the language

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x;

z += 1;
x += 1;

z = y;
z += 1;

return EXIT_SUCCESS;
}

reference.cc

x 5

y 10

Note: Arrow points
to next instruction.

9

CSE333, Winter 2021L11: References, Const, Classes

References

 A reference is an alias for another variable
 Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

 Introduced in C++ as part of the language

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x; // binds the name "z" to x

z += 1;
x += 1;

z = y;
z += 1;

return EXIT_SUCCESS;
}

reference.cc

x, z 5

y 10

Note: Arrow points
to next instruction.

10

CSE333, Winter 2021L11: References, Const, Classes

References

 A reference is an alias for another variable
 Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

 Introduced in C++ as part of the language

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x; // binds the name "z" to x

z += 1; // sets z (and x) to 6
x += 1;

z = y;
z += 1;

return EXIT_SUCCESS;
}

reference.cc

x, z 6

y 10

Note: Arrow points
to next instruction.

11

CSE333, Winter 2021L11: References, Const, Classes

References

 A reference is an alias for another variable
 Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

 Introduced in C++ as part of the language

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x; // binds the name "z" to x

z += 1; // sets z (and x) to 6
x += 1; // sets x (and z) to 7

z = y;
z += 1;

return EXIT_SUCCESS;
}

reference.cc

x, z 7

y 10

Note: Arrow points
to next instruction.

12

CSE333, Winter 2021L11: References, Const, Classes

References

 A reference is an alias for another variable
 Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

 Introduced in C++ as part of the language

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x; // binds the name "z" to x

z += 1; // sets z (and x) to 6
x += 1; // sets x (and z) to 7

z = y; // sets z (and x) to the value of y
z += 1;

return EXIT_SUCCESS;
}

reference.cc

x, z 10

y 10

Note: Arrow points
to next instruction.

13

CSE333, Winter 2021L11: References, Const, Classes

References

 A reference is an alias for another variable
 Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

 Introduced in C++ as part of the language

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x; // binds the name "z" to x

z += 1; // sets z (and x) to 6
x += 1; // sets x (and z) to 7

z = y; // sets z (and x) to the value of y
z += 1; // sets z (and x) to 11

return EXIT_SUCCESS;
}

reference.cc

x, z 11

y 10

Note: Arrow points
to next instruction.

14

CSE333, Winter 2021L11: References, Const, Classes

References

 There is no way to change what a reference is an alias for

 That means a reference must always be initialized when
declared
 int& x; // is an error

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x; // binds the name "z" to x

z = y; // sets x to 10
z = &y; // sets x to the address of y!
&z = y; // compile time error

return EXIT_SUCCESS;
}

15

CSE333, Winter 2021L11: References, Const, Classes

Using References: Pass-By-Reference

 C++ allows you to use real pass-by-reference
 Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

swap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT_SUCCESS;

}

(main) a 5

(main) b 10

Note: Arrow points
to next instruction.

16

CSE333, Winter 2021L11: References, Const, Classes

Pass-By-Reference

 C++ allows you to use real pass-by-reference
 Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

swap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT_SUCCESS;

}

(main) a
(swap) x

5

(main) b
(swap) y

10

Note: Arrow points
to next instruction.

(swap) tmp

17

CSE333, Winter 2021L11: References, Const, Classes

Pass-By-Reference

 C++ allows you to use real pass-by-reference
 Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

swap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT_SUCCESS;

}

(main) a
(swap) x

5

(main) b
(swap) y

10

Note: Arrow points
to next instruction.

(swap) tmp 5

18

CSE333, Winter 2021L11: References, Const, Classes

Pass-By-Reference

 C++ allows you to use real pass-by-reference
 Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

swap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT_SUCCESS;

}

(main) a
(swap) x

10

(main) b
(swap) y

10

Note: Arrow points
to next instruction.

(swap) tmp 5

19

CSE333, Winter 2021L11: References, Const, Classes

Pass-By-Reference

 C++ allows you to use “real” pass-by-reference
 Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

swap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT_SUCCESS;

}

(main) a
(swap) x

10

(main) b
(swap) y

5

Note: Arrow points
to next instruction.

(swap) tmp 5

20

CSE333, Winter 2021L11: References, Const, Classes

Pass-By-Reference

 C++ allows you to use real pass-by-reference
 Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

swap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT_SUCCESS;

}

(main) a 10

(main) b 5

Note: Arrow points
to next instruction.

21

CSE333, Winter 2021L11: References, Const, Classes

Return-by-Reference

 C and C++ normally “return by value”
 The thing the caller gets back is a copy of the thing the callee

returned

 Returning a reference gives caller access to the thing
returned

 Example:
 std::vector<int> my_vec{0,1,2,3,4};

my_vec.at(3) = -3;
for (auto & i : my_vec) std::cout << i << “ “;

 Output: 0 1 2 -3 4

22

CSE333, Winter 2021L11: References, Const, Classes

Pass-By-Reference / Return-By-Reference

 Why would you use them?
 Performance

• It’s too expensive to copy the thing being passed or returned
– In C, you have to copy potentially a lot of bytes

– In C++, additionally, if you’re communicating an object, you have to create
the object, which means you have to run a constructor

 Functionality
• You want to give the callee / caller access to the thing passed /

returned
– Including output parameters

23

CSE333, Winter 2021L11: References, Const, Classes

Lecture Outline

 C++ References

 const in C++

 C++ Classes Intro

24

CSE333, Winter 2021L11: References, Const, Classes

const Keyword

 const: this “cannot be” changed/mutated
 Used much more in C++ than in C

 Signal of intent to compiler; meaningless at hardware level
• Results in compile-time errors

void BrokenPrintSquare(const int& i) {
i = i*i; // compiler error here!
std::cout << i << std::endl;

}

int main(int argc, char** argv) {
int j = 2;
BrokenPrintSquare(j);
return EXIT_SUCCESS;

}

25

CSE333, Winter 2021L11: References, Const, Classes

Pointers and const

 There are two natural assignments involving pointers:
1) You can change the value of the pointer (what it points to)

2) You can change the thing the pointer points to (via dereference)

 const can be applied to either/both of these!

 Just like the ‘*’ used to declare a pointer can go in a few
places, so can const

 Tip: read variable declaration from right-to-left
 Tip: write “const” so that reading right to left makes sense

26

CSE333, Winter 2021L11: References, Const, Classes

const and Pointers

 The syntax with pointers is confusing:

const int y = 6; // can’t assign to y after this
//int const y = 6; // exactly the same as const int y = 6

y++; // compiler error

const int *z = &y; // pointer to a (const int)
//int const *z = &y; // exactly the same as “const int *”

*z += 1; // compiler error
z++; // doesn’t cause a compile-time error

int * const w = &x; // (const pointer) to a (variable int)
*w += 1; // ok
w++; // compiler error

const int *const v = &x; // (const pointer) to a (const int)
//int const *const v = &x; // exactly the same

*v += 1; // compiler error
v++; // compiler error

constmadness.cc 27

CSE333, Winter 2021L11: References, Const, Classes

const and Pointers

 int const * * const p = y;

 Which of the following aren’t errors?
 p = 0;

 *p = 0;

 **p = 0;

 ***p = 0;

 &p = 0;

 p = &0;

28

CSE333, Winter 2021L11: References, Const, Classes

const and Pointers

 int const * * const p = &y;

 Which of the following aren’t errors?
 p = 0;

 *p = 0;

 **p = 0;

 ***p = 0;

 &p = 0;

 p = &0;

29

CSE333, Winter 2021L11: References, Const, Classes

Bonus Examples

 Which of the following lines can compile without error?

30

const int & p = y;
int const & q = y;
int & const r = y;
p = 0;
q = 0;
r = 0;

CSE333, Winter 2021L11: References, Const, Classes

Bonus Examples

 Which of the following lines can compile without error?

31

const int & p = y;
int const & q = y;
int & const r = y;
p = 0;
q = 0;
r = 0;

CSE333, Winter 2021L11: References, Const, Classes

const Parameters

 If a method defintely does not modify a parameter, it
should specify it as const
 That may allow the compiler to perform some optimizations in

the callers that wouldn’t be legal otherwise

 Also, sometimes it’s required...

32

int my_strlen(char *p_string)
{

char *q;
if (p_string == nullptr)

return 0;
for (q=p_string; *q; q++)

;
return q-p_string;

}

Should be const

CSE333, Winter 2021L11: References, Const, Classes

const Parameters

33

int my_strlen(char *p_string)
{

char *q;
if (p_string == nullptr)

return 0;
for (q=p; *q; q++)

;
return q-p;

}

int main(int argc, char *argv[])
{

for (int i=0; i<argc; i++)
printf("'%s' -> %d\n", argv[i], my_strlen(argv[i]));

return EXIT_SUCCESS;
}

[attu2] > ./a.out one two three
'./a.out' -> 7
'one' -> 3
'two' -> 3
'three' -> 5

CSE333, Winter 2021L11: References, Const, Classes

const Parameters

34

int my_strlen(char *p_string)
{

char *q;
if (p_string == nullptr)

return 0;
for (q=p; *q; q++)

;
return q-p;

}

int main(int argc, char *argv[])
{

int len = my_strlen(“cse333”);
return EXIT_SUCCESS;

}

$ g++ -std=c++17 -Wall -g test.cc
test.cc: In function ‘int main(int, char**)’:
test.cc:15:23: warning: ISO C++ forbids converting a string constant to ‘char*’ [-Wwrite-strings]

15 | int len = my_strlen("cse333");
| ^~~~~~~~

[attu2] ~/tmp> ./a.out
6

CSE333, Winter 2021L11: References, Const, Classes

const Parameter Troubles

 The issue occurs much more frequently than you likely
expect

 Once some routine says something is const, the compiler
wants to keep it const

 If you don’t say const, the caller will have issues
 That caller can be you...

35

CSE333, Winter 2021L11: References, Const, Classes

Lecture Outline

 C++ References

 const in C++

 C++ Classes Intro

36

CSE333, Winter 2021L11: References, Const, Classes

C++ class declarations and definitions

 Code for C++ classes (typically) goes in two files

 The .h file declares the class
 lists instance variables and method names, but not method

implementations

 including the “private” portions

 The .cc file defines the methods
 Gives code for them

 Usually...

 If the class name is ABCD, the files are usually named ABCD.h
and ABCD.cc
 but it’s only convention

37

CSE333, Winter 2021L11: References, Const, Classes

Classes – the .h file

 The class declaration goes in a .h file

 Members can be functions (methods) or data (variables)

 The file is usually called MyClass.h

 Don’t forget the trailing semi-colon!

38

class MyClass {
public:
// public member declarations go here
int ExampleMethod(int x, int y);

private:
// private member declarations go here

};

CSE333, Winter 2021L11: References, Const, Classes

Classes – the .cc file

 Class member function definitions go in the .cc file

 There is no compiler enforced relationship among the
names of the class, the .h file, and the .cc file
 You must give the method’s fully qualified name when defining it

MyClass::ExampleMethod

39

int MyClass::ExampleMethod(int x, int y, int z) {
// body statements

}

CSE333, Winter 2021L11: References, Const, Classes

Class .h and .cc files

 Client code must #include the .h file to use the class

 Private members must be included in the .h file
 They’re private in that the compiler won’t compile non-class code

that attempts to manipulate them

 So why expose private information to clients?
 Clients can perform one operation involving private instance

variables: object creation
• The variable declaration: vector<string> word_list;

 The compiler needs to know the size of the object so it can
allocate space for it (on the stack, say)

40

CSE333, Winter 2021L11: References, Const, Classes

Inlining
 Normally, a function call in the source code results in a

procedure call at runtime
 all the overheads associated with it

 Inlining is the idea of injecting the procedure’s code into
the caller’s code at compile time
 Avoids procedure call/return overhead at runtime

 Enables possible optimizations of code across the (logical)
procedure call/return boundaries

 To inline, a procedure the compiler must have access to
the procedure’s implementation when compiling a call to
it

41

CSE333, Winter 2021L11: References, Const, Classes

Inlining

 C++ is very concerned about performance

 It has a few ways the programmer can use to encourage
the compiler to inline a method
 But the compiler knows best – it may, or may not, inline

 The simplest of them is to simply provide the method’s
definition in the .h file (and not in the .cc file)
 This is often done for particularly trivial methods, like getters

42

CSE333, Winter 2021L11: References, Const, Classes

Class Definition (.h file)

43

#ifndef _POINT_H_
#define _POINT_H_

class Point {
public:
Point(const int x, const int y); // constructor
int get_x() const { return x_; } // potential inline
int get_y() const { return y_; } // potential inline
double Distance(const Point& p) const;
void SetLocation(const int x, const int y;

private:
int x_; // data member
int y_; // data member

}; // class Point

#endif // _POINT_H_

Point.h

Providing method bodies enables inlining

Cannot be inlined

CSE333, Winter 2021L11: References, Const, Classes

Class Definition (.h file)

44

#ifndef _POINT_H_
#define _POINT_H_

class Point {
public:
Point(const int x, const int y); // constructor
int get_x() const { return x_; } // potential inline
int get_y() const { return y_; } // potential inline
double Distance(const Point& p) const;
void SetLocation(const int x, const int y;

private:
int x_; // data member
int y_; // data member

}; // class Point

#endif // _POINT_H_

Point.h

Promises that the method doesn’t modify the object.
Useful when compiling caller for optimization reasons.

CSE333, Winter 2021L11: References, Const, Classes

The.cc file - Class Member Definitions

45

#include <cmath>
#include "Point.h"

Point::Point(const int x, const int y) {
x_ = x;
this->y_ = y; // "this->" is optional unless name conflicts

}

double Point::Distance(const Point& p) const {
// We can access p’s x_ and y_ variables either through the
// get_x(), get_y() accessor functions or the x_, y_ private
// member variables directly, since we’re in a member
// function of the same class.
double distance = (x_ - p.get_x()) * (x_ - p.get_x());
distance += (y_ - p.y_) * (y_ - p.y_);
return sqrt(distance);

}

void Point::SetLocation(const int x, const int y) {
x_ = x;
y_ = y;

}

Point.cc

CSE333, Winter 2021L11: References, Const, Classes

Class Usage (.cc file)

46

#include <iostream>
#include "Point.h"

int main(int argc, char** argv) {
Point p1(1, 2); // allocate a new Point on the Stack
Point p2(4, 6); // allocate a new Point on the Stack

std::cout << "p1 is: (" << p1.get_x() << ", "
<< p1.get_y() << ")\n"
<< "p2 is: (" << p2.get_x() << ", ";
<< p2.get_y() << ")\n"
<< "dist : " << p1.Distance(p2) << std::endl;

return 0;
}

usepoint.cc

