WA UNIVERSITY of WASHINGTON

C++ Intro

LO7: C++ Intro

CSE 333 Winter 2021

Instructor: John Zahorjan

Teaching Assistants:
Matthew Arnold
Elizabeth Haker

Leo Liao

Guramrit Singh

Nonthakit Chaiwong Jacob Cohen
Henry Hung Chase Lee
Tim Mandzyuk Benjamin Shmidt

CSE333, Winter 2021

WA UNIVERSITY of WASHINGTON LO7: C++ Intro CSE333, Winter 2021

Today’s Goals

+~ An introduction to C++
= Some comparisons to C and shortcomings that C++ addresses
" Give you a perspective on how to learn C++

= Kick the tires and look at some code

+» Advice:
® C++is much bigger and more complicated than C

" Web searches for help on some particular problem you’re having
may not be as successful

" |n any case, it would be worth reading some prose discussion of
each C++ topic (a textbook, say, or an article you trust)

WA UNIVERSITY of WASHINGTON LO7: C++ Intro CSE333, Winter 2021

C++

Cis roughly a subset of C++

Most C program can be compiled with a C++ compiler and mean the
same things they mean in C
That means these basic concepts are preserved:
. global / local / heal allocated variables
° pointers
. assignment is (by default) memory copy
. call by value
. a single (default) global name space for functions
. declare / define distinction

. A “you’re the boss” attitude — if it can be compiled, the compiler is likely
to compile it

WA UNIVERSITY of WASHINGTON LO7: C++ Intro CSE333, Winter 2021

C++

C++ has evolved considerably over time

It’s hard to get rid of language features..

o Sometimes the language is a little more rough edged than it
would be if we started over and designed it today

Sometimes it’s hard to figure out correct syntax

Sometimes it’s hard to know for sure what a statement
means

C++ does much more sophisticated compile time code
analysis than C

Used mainly to make it more expressive

WA UNIVERSITY of WASHINGTON LO7: C++ Intro CSE333, Winter 2021

C++

+» A major addition is support for classes and objects
= Classes

- Public, private, and protected methods and instance variables
« (multiple!) inheritance
= Polymorphism

- Static polymorphism: multiple functions or methods with the same
name, but different argument types (overloading)

— Works for all functions, not just class members

- Dynamic (subtype) polymorphism: derived classes can override
methods of parents, and methods will be dispatched correctly

% C++is MUCH MORE than the addition of classes, though!

WA UNIVERSITY of WASHINGTON LO7: C++ Intro CSE333, Winter 2021

Namespaces - C

+» We had to be careful about namespace collisions

= We used naming conventions to help avoid collisions in the global
namespace

- e.g. LLIteratorNext vs. HTTteratorNext, etc.

WA UNIVERSITY of WASHINGTON LO7: C++ Intro CSE333, Winter 2021

Namespaces - C++

+» Permits creation of namespaces

" The linked list module could define an “LL1.” nhamespace while the
hash table module could define an “HT” namespace

= Both modules could define a class with (local) name Iterator
« One would be globally named LL: : Iterator

- The other would be globally named HT : : ITterator

+ Classes also allow duplicate names without collisions

"= Namespaces group and isolate names in collections of classes and
other “global” things (somewhat like Java packages)

 Entire C++ standard library is in a namespace std (more later...)

WA UNIVERSITY of WASHINGTON LO7: C++ Intro CSE333, Winter 2021

Polymorphism - C

«» Nope

WA UNIVERSITY of WASHINGTON LO7: C++ Intro CSE333, Winter 2021

Polymorphism — C++

+» Yep

" Person::update(string s); and
Person::update(int x);

+ In fact, C++ views most everything you write as a request
to invoke some functionality, and then allows the
programmer to (re)define that functionality

" The language is “exporting” control over the meaning of
operators, say, to the programmer

= Avery general mechanism is used for the programmer to express
the meaning: code!

WA UNIVERSITY of WASHINGTON LO7: C++ Intro CSE333, Winter 2021

Generics - C

+» We had to emulate generic data structures
" Generic linked list using void* payload

= Pass function pointers to generalize different “methods” for data
structures

- Comparisons, deallocation, pickling up state, etc.

10

WA UNIVERSITY of WASHINGTON LO7: C++ Intro CSE333, Winter 2021

Generics - C++

+» Supports templates to facilitate generic data types

® Parametric polymorphism — same idea as Java generics, but
different in details, particularly implementation

" To declare that x is a vector of ints: vector<int> x;
" To declare that x is a vector of strings: vector<string> x;

= To declare that x is a vector of (vectors of floats):
vector<vector<float>> x;

+» We write code that, in essence, generates code...

11

WA UNIVERSITY of WASHINGTON LO7: C++ Intro CSE333, Winter 2021

Standard Library - C

+» Cdoesn’t provide any standard data structures
" We had to implement our own linked list and hash table

= As a C programmer, you often reinvent the wheel
- Maybe if you're clever you’ll use somebody else’s libraries

- But C’s lack of abstraction, encapsulation, and generics means you’ll
probably end up tinkering with them or tweak your code to use them

12

WA UNIVERSITY of WASHINGTON LO7: C++ Intro CSE333, Winter 2021

Standard Library - C++

+» The C++ standard library is huge!

= Generic containers: bitset, queue, list, associative array
(including hash table), deque, set, stack, and vector

- And iterators for most of these

- And algorithms for most of these...

= A stringclass: yeah!

= Streams: allows you to stream data to and from objects,
consoles, files, strings, and so on

= And more...

+ Many of the features that have been introduced into C++
over the years have to do with writing efficient libraries

13

CSE333, Winter 2021

WA UNIVERSITY of WASHINGTON LO7: C++ Intro

Error Handling - C

+~ Thereis no language support, only convention

+ Convention:
= Define and return error codes
= Customers have to understand error code conventions and need
to constantly test return values

m eg.ifa() callsb(),andb ()calls c ()
- a depends on b to propagate an error in c back to it

14

WA UNIVERSITY of WASHINGTON LO7: C++ Intro CSE333, Winter 2021

Error Handling - C++

+» Supports exceptions
" try/throw/catch
= Can simplify error processing, but...

" There is an unfortunate interaction with memory management

« Consider: a () callsb (), which calls ¢ ()

— If ¢ () throws an exception that b () doesn’t catch, b () might not get a
chance to free resources it allocated - memory leak

«» C++ code often needs to work with C libraries that use
return codes

" |ncluding library routines making system calls (e.g., 1/0)

« Some of which still use errno

15

WA UNIVERSITY of WASHINGTON LO7: C++ Intro CSE333, Winter 2021

C++ Hilarity

void sub()
{

std::cout << "sub() here\n";

}

int main() | hope you’ll never actually
{ do this!
try
{

throw sub;

}
catch (void (*proc)())

{
proc();
}

return O;

}

[attu3] ~/tmp> g++ -std=c++17 -g -Wall throw-joke.cc -o throw-joke
[attu3] ~/tmp> ./throw-joke

sub() here

16

WA UNIVERSITY of WASHINGTON LO7: C++ Intro

C++ Additional Hilarity

void sub()
{

std::cout << "sub() here\n";

}

CSE333, Winter 2021

int main() noexcept Yikes!

{
try

{

throw sub;

}
catch (void (*proc)())

{

proc();
}

return O;

}

[attu3] ~/tmp> g++ -std=c++17 -g -Wall throw-joke.cc -o throw-joke
[attu3] ~/tmp> ./throw-joke
sub() here

17

WA UNIVERSITY of WASHINGTON LO7: C++ Intro CSE333, Winter 2021

C++is C's Crazed Offspring

« C++ shares many of the attitudes of its parent

= Execution performance should be as good as, or better, than what a
team of assembler prorammers could produce

«+ Memory management

= C++ has no garbage collector
- If you use new/malloc, you’re responsible for delete/free
= But some other features help

« Classes let you build “smart pointers” that can do reference counted garbage
collection

= Awesome, but it will take a bit to see why:
« C++ guarantees that the constructor is called when an object is created

- It also guarantees that the destructor is called when it is destroyed
— Think about that property and the fact that you can stack allocate objects

18

WA UNIVERSITY of WASHINGTON LO7: C++ Intro CSE333, Winter 2021

C++ is Still a Crazy Mix of Execution in the
Language and Execution in the Hardware

+ C++ doesn’t guarantee type or memory safety

" You can still:
- Forcibly cast pointers between incompatible types
- Walk off the end of an array and smash memory

- Have dangling pointers (pointers pointing to memory that has been
freed)

- Create a pointer to an arbitrary address
- Declare things “private” and then get around it

- (Sometimes) declare things const and then find a way to modify them

19

WA UNIVERSITY of WASHINGTON LO7: C++ Intro CSE333, Winter 2021

C++ Has Many, Many Features

\/
0’0

0

4

0

L)

>

0

L)

>

0

L)

Operator overloading

= Your class can define methods for handling “+”, “->”, etc.

]

« You can make ‘+’ mean subtract!
Object constructors, destructors
= Particularly handy for stack-allocated objects
Reference types
" Truly pass-by-reference instead of always pass-by-value
Advanced Objects

= Multiple inheritance, virtual base classes, dynamic dispatch

(Almost) All the features have some specified meaning, so that
compilers can implement them

= Sometimes the rules are so complicated you can’t apply them

20

WA UNIVERSITY of WASHINGTON LO7: C++ Intro CSE333, Winter 2021

o0

Moving Toward Understanding C++

void sub(const myStruct *pStruct);

" You’re thinking, “Great, C++ will guarantee for me that my
structure isn’t changed if | pass it to sub”

" C++is thinking, “Great, the programmer is telling me | can assume
that structure isn’t changed when they call sub”

= (Note: You might reasonably be thinking “what does const myStruct *” mean? That
pStruct can’t change or that *pStruct can’t change, or both?)

myStructinstance.nUnits = 1;
sub(&myStructinstance);
totalUnits = totalUnits + myStructinstance.nUnits;

21

WA UNIVERSITY of WASHINGTON LO7: C++ Intro CSE333, Winter 2021

Hello World in C

#include <stdio.h> // for printf()
#include <stdlib.h> // for EXIT SUCCESS

int main(int argc, char** argv) {
printf ("Hello, World!\n"):;
return EXIT SUCCESS;

}

\ v

= Compile with gcc:

gcc -Wall -g -std=cl7 -o hello helloworld.c

" You should be able to describe in detail everything in this code

22

WA UNIVERSITY of WASHINGTON LO7: C++ Intro

Hello World in C++

helloworld.cc
r#include <iostream> |
#include <cstdlib>

int main(int argc, char** argv) {
std: :cout << "Hello, World!" << std::endl;
return EXIT SUCCESS;

}

\

+ Looks simple enough...

= Compile with g++ instead of gcc

" Use .cc filesinstead of .c

g++ -Wall -g -std=c++17 -o helloworld helloworld.cc

= Let’s walk through the program step-by-step to highlight some
differences

CSE333, Winter 2021

23

WA UNIVERSITY of WASHINGTON LO7: C++ Intro

Hello World in C++

helloworld.cc

\ﬁigglude <iostream>
#include <cstdlib>

int main(int argc, char** argv) {

return EXIT SUCCESS;
}

\

std: :cout << "Hello, World!" << std::endl;

D

+ lostreamis part of the C++ standard library

CSE333, Winter 2021

= Note: you don’t write “.h” when you include C++ standard library

headers

- But you do for local headers (e.g. #finclude "11.h")

" jostream declares stream object instances in the “std”

Namespace

« e.g.std::cin, std::cout, std: :cerr

24

WA UNIVERSITY of WASHINGTON LO7: C++ Intro CSE333, Winter 2021

Hello World in C++

p
#include <iostream>

@lude <cstdlib)

int main(int argc, char** argv) {
std: :cout << "Hello, World!" << std::endl;
return EXIT SUCCESS;

}

\ v

helloworld.cc

D

» cstdlib is the Cstandard library’s stdlib.h
" We include it here for EXIT SUCCESS, as usual

= Nearly all C standard library functions are available to you

« For Cheader some.h, youshould #include <csome>

25

WA UNIVERSITY of WASHINGTON LO7: C++ Intro CSE333, Winter 2021

Hello World in C++

helloworld.cc

D

r#include <iostream>
#include <cstdlib>

int majn(int argc, char** argv) {
<< "Hello, World!" << std::endl;
return EXIT SUCCESS;
}

\

» std::cout isthe “cout” objectin the “std”
namespace (declared by 1iostream)
" C++’s name for stdout

" std:cout isan object of class ostream

« http://www.cplusplus.com/reference/ostream/ostream/

+ The entire standard library is in the namespace std

26

WA UNIVERSITY of WASHINGTON LO7: C++ Intro CSE333, Winter 2021

Hello World in C++
helloworld.cc

é N

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
std: :cout << "Hello, World!" << std::endl;
return EXIT SUCCESS;

}

\ v

« C++ distinguishes between objects and primitive types

® These include the familiar ones from C:
char, short, int, 1long, float, double, etc.

= C++ also defines bool as a primitive type

- But bool and int values silently convert types for compatiblity with C

27

WA UNIVERSITY of WASHINGTON LO7: C++ Intro CSE333, Winter 2021

Hello World in C++
helloworld.cc

é N

#include <iostream>
#include <cstdlib>

int main(int_argc, char** argv) {
std::cout<;f>"Hello, World!" << std::endl;
return EXIT SUCCESS;

+» “<<”is an operator defined by the C++ language
" Defined in C as well: it bit-shifts integers in C (and C++)

" C++ allows classes and functions to overload operators!

- Here, the ostream class overloads “<<”

28

WA UNIVERSITY of WASHINGTON LO7: C++ Intro CSE333, Winter 2021

Operators in C++ (preview)

« In C++, everything is a function call (only kind of true)

+ InC:
LinkedList_Append(&list, payload)

» In Java:
list.append(payload)

2 In C++:
list.append(payload) // append is a binary function
or
list + payload // “+” is the name of a binary function

29

WA UNIVERSITY of WASHINGTON LO7: C++ Intro CSE333, Winter 2021

Hello World in C++

r#include <iostream>
#include <cstdlib>

int main(int_argc, char** argv) {
std::cout<;f>"Hello, World!" << std::endl;
return EXIT SUCCESS;

helloworld.cc

D

}

\ v

+» “<<”is an operator defined by the C++ language
" Defined in C as well: it bit-shifts integers in C (and C++)

" Here, the ostream class defines the function “<<” when a char*
is given as the (second) input

30

WA UNIVERSITY of WASHINGTON LO7: C++ Intro CSE333, Winter 2021

Hello World in C++

r#include <iostream>
#include <cstdlib>

helloworld.cc

D

int main(int argc, char** argv) {

<EE§E:cout << "Hello, World!"™x< std::endl;
return EXIT SUCChSS;

}

\ v

» The ostream class’ member functions that handle <<
return a reference to themselves
" When [std::cout << "Hello, World! ";]is evaluated:

- A member function of the std: : cout objectis invoked
- It buffers the string "Hello, World!" tostdout

« It returns (a reference to) std: : cout

— “method chaining”

31

WA UNIVERSITY of WASHINGTON LO7: C++ Intro CSE333, Winter 2021

Hello World in C++
helloworld.cc

é N

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
std: :cout << "Hello, World!"(EEI%td::e%EEZ)
return EXIT SUCCESS;

}

\ v

% Next, another member functionon std: : cout is
invoked to handle << with RHS std: :endl

" std::endl is a pointer to a “manipulator” function

 This manipulator function writes newline (' \n"') tothe ostreamit
is invoked on and then flushes the ostream’s buffer

- This enforces that something is printed to the console at this point

32

WA UNIVERSITY of WASHINGTON LO7: C++ Intro CSE333, Winter 2021

With Objects

helloworld2.cc

2\

r#include <iostream>
#include <cstdlib>

@lude <strinD

int main(int argc, char** argv) {
std::string hello("Hello, World!");
std::cout << hello << std::endl;
return EXIT SUCCESS;

}

\. J

% C++’s standard library hasa std: : st ring class
" Include the st ring header to use it

= http://www.cplusplus.com/reference/string/

33

WA UNIVERSITY of WASHINGTON LO7: C++ Intro CSE333, Winter 2021

With Objects

helloworld2.cc

4 , , N
#include <iostream>

#include <cstdlib>
#include <string>

int main(int argc, char** argv) {
std::string @EEIBX"Hello, World!") ;
std::cout << hello << std::endl;
return EXIT SUCCESS;

}

\ J

+» Here we are instantiatinga std: : string object on the
stack (an ordinary local variable)
" Passing the Cstring "Hello, World!" toits constructor

"= Don’t have to “new” to create an object

« hello is deallocated (and its destructor invoked) when main
returns

34

WA UNIVERSITY of WASHINGTON LO7: C++ Intro CSE333, Winter 2021

With Objects

r#include <iostream>
#include <cstdlib>
#include <string>

helloworld2.cc

N\

int main (int argc, char** argv) {
std::string hello("Hello, World!");

(EEEE:cout << hézz§><< std::endl;
return EXTIT oUCCESS;

}

\ J

+» The C++ string library also overloads the << operator

= Defines a function that is invoked when the LHS is ostream and
the RHSis std: :string

« http://www.cplusplus.com/reference/string/string/operator<</

« We'll look at this in detail later...

35

WA UNIVERSITY of WASHINGTON LO7: C++ Intro CSE333, Winter 2021

using namespace std;

helloworld2.cc
N

r#include <iostream>
#include <cstdlib>
#include <string>

Cﬁgzig namespace {52;)

int main(int argc, char** argv) {
string hello("Hello, World!");
cout << hello << endl;
return EXIT SUCCESS;

}

\. J

+» The using keyword introduces a namespace (or part of)
into the current region

0 [using namespace std;] imports all names from std: :

- [using std: :cout;]imports only std: :cout
(used as cout)

36

WA UNIVERSITY of WASHINGTON LO7: C++ Intro CSE333, Winter 2021

using namespace std;

helloworld2.cc
N

r#include <iostream>
#include <cstdlib>
#include <string>

using namespace std;

int _main(int argc, char** argv) {

(string hello("Hello, World!");
"
(SBUT)R< hello <<
return EXIT SUCCRESS;
}
_)

"= Wecannowrefertostd: :stringasstring, std: :cout
as cout, and std: :endl as endl

- Google style guide says never use using namespace, only using
for individual items

- using namespace std; isused, alot

- Eschew using it...

37

WA UNIVERSITY of WASHINGTON LO7: C++ Intro CSE333, Winter 2021

String Concatenation

concat.cc

4 . .)
#include <iostream>

#include <cstdlib>
#include <string>

int main(int argc, char** argv) {
std::string hello("Hello") ;
hello 4:E§iio + ", Woﬁzgzj)
std::cout << hello << std::endl;
return EXIT SUCCESS;

}

\. J

« The string class overloads the “+” operator with argument
of type char*

+~ Apparently just like Java!
" The effect is just what you expect

= Except some much more complicated things are actually going
on...

38

WA UNIVERSITY of WASHINGTON LO7: C++ Intro CSE333, Winter 2021

String Assignment

concat.cc
N

(#include <iostream>
#include <cstdlib>
#include <string>

int main(int argc, char** argv) {

stde:string hello("Hello");
@' ello + ", World!";
std::cout << hello << std::endl;

return EXIT SUCCESS;
}

\ J

« The string class overloads the “=" operator

+ The effectis just like Javal

" What is happening is more complicated...

39

WA UNIVERSITY of WASHINGTON LO7: C++ Intro CSE333, Winter 2021

Alternate Syntax

concat.cc
(#include <iostream> b
#include <cstdlib>
#include <string>
int main(int argc, char** argv) {
std::string hella("Hello");
<Gello = hello + ", World!"; >
std::cout << hello << std::endl;
return EXIT SUCCESS;
}
. y,

[hello.operator=(hello.operator+(", World!"));]

40

WA UNIVERSITY of WASHINGTON LO7: C++ Intro CSE333, Winter 2021

Stream Manipulators

manip.cc
(#include <iostream> h
#include <cstdlib>
include <iomaé€§2>
int main(int argc, char** argv) {
std::cout << "Hi! " << std::setw(4) << 5
<< "M <K< 5 << std::endl;
cout << std:: hex << 16 << " " << 13 << std:: endl;
cout << std:: dec << 16 << " " << 13 << std:: endl;
return EXIT SUCCRESS;
}
_ J

+» 1omanip defines a set of stream manipulator functions

" Pass them to a stream to affect formatting

« http://www.cplusplus.com/reference/iomanip/

« http://www.cplusplus.com/reference/ios/

41

WA UNIVERSITY of WASHINGTON LO7: C++ Intro CSE333, Winter 2021

Stream Manipulators

manip.cc
(#include <iostream> h
#include <cstdlib>
#include <iomanip>
int main(int argc, char** arg
std::cout << "Hil! " << << 5
<< " K 5 << std:iTendl;
cout << std:: hex << 16 << " " << 13 << std:: endl;
cout << std:: dec << 16 << " " << 13 << std:: endl;
return EXIT SUCCRESS;
}
- Y,

» setw (x) setsthe width of the next field to x

= Only affects the next thing sent to the output stream (i.e. it is not
persistent)

42

WA UNIVERSITY of WASHINGTON LO7: C++ Intro CSE333, Winter 2021

Stream Manipulators

manip.cc
(#include <iostream> b
#include <cstdlib>
#include <iomanip>
int main(int argc, char** argv) {
std::cout << "Hi! " << std::setw(4) << 5
<< " " <K< 5 <KL std::endl;
cout << < 16 <<« " " 13 << std:: endl;
cout << < 16 << " " << 13 << std:: endl;
return EXIT SUCCESS;
}
- y,

+ hex, dec, and oct set the numerical base for integer
output to the stream

= Stays in effect until you set the stream to another base (i.e., it is
persistent)

43

WA UNIVERSITY of WASHINGTON LO7: C++ Intro

CSE333, Winter 2021

C and C++

helloworld3.cc

r#include <cstdio> ‘
#include <cstdlib>

int main(int argc, char** argv) {
printf ("Hello from C!\n");
return EXIT SUCCESS;

}

\

+ Cis (roughly) a subset of C++

" You can stilluse print £ —but bad style in ordinary C++ code

® Can mix C and C++ idioms if needed to work with existing code,
but avoid mixing if you can

« Use C++(17)

44

WA UNIVERSITY of WASHINGTON LO7: C++ Intro CSE333, Winter 2021

Reading Input
echonum.cc

(#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
int num;
std: :cout << "Type a number: ";
std: :cin >> num;
std: :cout << "You typed: " << num << std::endl;
return EXIT SUCCESS;

}

. J

« std::cinisan objectinstance of class istream

= Supports the >> operator for “extraction”

- Can be used in conditionals — (std: : cin>>num) is true if successful

— How is that possible?

" Hasagetline () method and methods to detect and clear errors

45

