
CSE333, Winter 2021L07: C++ Intro

C++ Intro
CSE 333 Winter 2021
C++ Intro
CSE 333 Winter 2021

Instructor: John Zahorjan

Teaching Assistants:

Matthew Arnold Nonthakit Chaiwong Jacob Cohen

Elizabeth Haker Henry Hung Chase Lee

Leo Liao Tim Mandzyuk Benjamin Shmidt

Guramrit Singh

CSE333, Winter 2021L07: C++ Intro

Today’s Goals

 An introduction to C++
 Some comparisons to C and shortcomings that C++ addresses

 Give you a perspective on how to learn C++

 Kick the tires and look at some code

 Advice:
 C++ is much bigger and more complicated than C

 Web searches for help on some particular problem you’re having
may not be as successful

 In any case, it would be worth reading some prose discussion of
each C++ topic (a textbook, say, or an article you trust)

2

CSE333, Winter 2021L07: C++ Intro

C++

• C is roughly a subset of C++
• Most C program can be compiled with a C++ compiler and mean the

same things they mean in C

• That means these basic concepts are preserved:
• global / local / heal allocated variables

• pointers

• assignment is (by default) memory copy

• call by value

• a single (default) global name space for functions

• declare / define distinction

• A “you’re the boss” attitude – if it can be compiled, the compiler is likely
to compile it

3

CSE333, Winter 2021L07: C++ Intro

C++

• C++ has evolved considerably over time

• It’s hard to get rid of language features..
• Sometimes the language is a little more rough edged than it

would be if we started over and designed it today

• Sometimes it’s hard to figure out correct syntax

• Sometimes it’s hard to know for sure what a statement
means

• C++ does much more sophisticated compile time code
analysis than C

• Used mainly to make it more expressive

4

CSE333, Winter 2021L07: C++ Intro

C++
 A major addition is support for classes and objects
 Classes

• Public, private, and protected methods and instance variables

• (multiple!) inheritance

 Polymorphism
• Static polymorphism: multiple functions or methods with the same

name, but different argument types (overloading)
– Works for all functions, not just class members

• Dynamic (subtype) polymorphism: derived classes can override
methods of parents, and methods will be dispatched correctly

 C++ is MUCH MORE than the addition of classes, though!

5

CSE333, Winter 2021L07: C++ Intro

Namespaces - C

 We had to be careful about namespace collisions
 We used naming conventions to help avoid collisions in the global

namespace
• e.g. LLIteratorNext vs. HTIteratorNext, etc.

6

CSE333, Winter 2021L07: C++ Intro

Namespaces - C++

 Permits creation of namespaces
 The linked list module could define an “LL” namespace while the

hash table module could define an “HT” namespace

 Both modules could define a class with (local) name Iterator
• One would be globally named LL::Iterator

• The other would be globally named HT::Iterator

 Classes also allow duplicate names without collisions
 Namespaces group and isolate names in collections of classes and

other “global” things (somewhat like Java packages)
• Entire C++ standard library is in a namespace std (more later…)

7

CSE333, Winter 2021L07: C++ Intro

Polymorphism - C

 Nope

8

CSE333, Winter 2021L07: C++ Intro

Polymorphism – C++
 Yep
 Person::update(string s); and

Person::update(int x);

 In fact, C++ views most everything you write as a request
to invoke some functionality, and then allows the
programmer to (re)define that functionality
 The language is “exporting” control over the meaning of

operators, say, to the programmer

 A very general mechanism is used for the programmer to express
the meaning: code!

9

CSE333, Winter 2021L07: C++ Intro

Generics - C

 We had to emulate generic data structures
 Generic linked list using void* payload

 Pass function pointers to generalize different “methods” for data
structures
• Comparisons, deallocation, pickling up state, etc.

10

CSE333, Winter 2021L07: C++ Intro

Generics - C++

 Supports templates to facilitate generic data types
 Parametric polymorphism – same idea as Java generics, but

different in details, particularly implementation

 To declare that x is a vector of ints: vector<int> x;

 To declare that x is a vector of strings: vector<string> x;

 To declare that x is a vector of (vectors of floats):
vector<vector<float>> x;

 We write code that, in essence, generates code...

11

CSE333, Winter 2021L07: C++ Intro

Standard Library - C

 C doesn’t provide any standard data structures
 We had to implement our own linked list and hash table

 As a C programmer, you often reinvent the wheel
• Maybe if you’re clever you’ll use somebody else’s libraries

• But C’s lack of abstraction, encapsulation, and generics means you’ll
probably end up tinkering with them or tweak your code to use them

12

CSE333, Winter 2021L07: C++ Intro

Standard Library - C++

 The C++ standard library is huge!
 Generic containers: bitset, queue, list, associative array

(including hash table), deque, set, stack, and vector
• And iterators for most of these

• And algorithms for most of these...

 A string class: yeah!

 Streams: allows you to stream data to and from objects,
consoles, files, strings, and so on

 And more…

 Many of the features that have been introduced into C++
over the years have to do with writing efficient libraries

13

CSE333, Winter 2021L07: C++ Intro

Error Handling - C

 There is no language support, only convention

 Convention:
 Define and return error codes

 Customers have to understand error code conventions and need
to constantly test return values

 e.g. if a() calls b(), and b()calls c()
• a depends on b to propagate an error in c back to it

14

CSE333, Winter 2021L07: C++ Intro

Error Handling - C++

 Supports exceptions
 try / throw / catch

 Can simplify error processing, but...

 There is an unfortunate interaction with memory management
• Consider: a() calls b(), which calls c()

– If c() throws an exception that b() doesn’t catch, b() might not get a
chance to free resources it allocated → memory leak

 C++ code often needs to work with C libraries that use
return codes
 Including library routines making system calls (e.g., I/O)

• Some of which still use errno

15

CSE333, Winter 2021L07: C++ Intro

C++ Hilarity

[attu3] ~/tmp> g++ -std=c++17 -g -Wall throw-joke.cc -o throw-joke

[attu3] ~/tmp> ./throw-joke

sub() here

16

void sub()
{
std::cout << "sub() here\n";

}

int main()
{
try

{
throw sub;

}
catch (void (*proc)())

{
proc();

}
return 0;

}

I hope you’ll never actually
do this!

CSE333, Winter 2021L07: C++ Intro

C++ Additional Hilarity

[attu3] ~/tmp> g++ -std=c++17 -g -Wall throw-joke.cc -o throw-joke

[attu3] ~/tmp> ./throw-joke

sub() here

17

void sub()
{
std::cout << "sub() here\n";

}

int main() noexcept
{
try

{
throw sub;

}
catch (void (*proc)())

{
proc();

}
return 0;

}

Yikes!

CSE333, Winter 2021L07: C++ Intro

C++ is C’s Crazed Offspring
 C++ shares many of the attitudes of its parent
 Execution performance should be as good as, or better, than what a

team of assembler prorammers could produce

 Memory management
 C++ has no garbage collector

• If you use new/malloc, you’re responsible for delete/free

 But some other features help
• Classes let you build “smart pointers” that can do reference counted garbage

collection

 Awesome, but it will take a bit to see why:
• C++ guarantees that the constructor is called when an object is created

• It also guarantees that the destructor is called when it is destroyed
– Think about that property and the fact that you can stack allocate objects

18

CSE333, Winter 2021L07: C++ Intro

C++ is Still a Crazy Mix of Execution in the
Language and Execution in the Hardware

 C++ doesn’t guarantee type or memory safety
 You can still:

• Forcibly cast pointers between incompatible types

• Walk off the end of an array and smash memory

• Have dangling pointers (pointers pointing to memory that has been
freed)

• Create a pointer to an arbitrary address

• Declare things “private” and then get around it

• (Sometimes) declare things const and then find a way to modify them

19

CSE333, Winter 2021L07: C++ Intro

C++ Has Many, Many Features
 Operator overloading
 Your class can define methods for handling “+”, “->”, etc.

• You can make ‘+’ mean subtract!

 Object constructors, destructors
 Particularly handy for stack-allocated objects

 Reference types
 Truly pass-by-reference instead of always pass-by-value

 Advanced Objects
 Multiple inheritance, virtual base classes, dynamic dispatch

 (Almost) All the features have some specified meaning, so that
compilers can implement them
 Sometimes the rules are so complicated you can’t apply them

20

CSE333, Winter 2021L07: C++ Intro

Moving Toward Understanding C++

 void sub(const myStruct *pStruct);
 You’re thinking, “Great, C++ will guarantee for me that my

structure isn’t changed if I pass it to sub”

 C++ is thinking, “Great, the programmer is telling me I can assume
that structure isn’t changed when they call sub”

 (Note: You might reasonably be thinking “what does const myStruct *” mean? That
pStruct can’t change or that *pStruct can’t change, or both?)

 ...
myStructInstance.nUnits = 1;
sub(&myStructInstance);
totalUnits = totalUnits + myStructInstance.nUnits;

21

CSE333, Winter 2021L07: C++ Intro

Hello World in C

 Compile with gcc:

 You should be able to describe in detail everything in this code

#include <stdio.h> // for printf()
#include <stdlib.h> // for EXIT_SUCCESS

int main(int argc, char** argv) {
printf("Hello, World!\n");
return EXIT_SUCCESS;

}

gcc -Wall -g -std=c17 -o hello helloworld.c

22

CSE333, Winter 2021L07: C++ Intro

Hello World in C++

 Looks simple enough…
 Compile with g++ instead of gcc

 Use .cc files instead of .c

 Let’s walk through the program step-by-step to highlight some
differences

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
std::cout << "Hello, World!" << std::endl;
return EXIT_SUCCESS;

}

g++ -Wall -g -std=c++17 -o helloworld helloworld.cc

helloworld.cc

23

CSE333, Winter 2021L07: C++ Intro

Hello World in C++

 iostream is part of the C++ standard library
 Note: you don’t write “.h” when you include C++ standard library

headers
• But you do for local headers (e.g. #include "ll.h")

 iostream declares stream object instances in the “std”
namespace
• e.g. std::cin, std::cout, std::cerr

24

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
std::cout << "Hello, World!" << std::endl;
return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Winter 2021L07: C++ Intro

Hello World in C++

 cstdlib is the C standard library’s stdlib.h
 We include it here for EXIT_SUCCESS, as usual

 Nearly all C standard library functions are available to you
• For C header some.h, you should #include <csome>

25

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
std::cout << "Hello, World!" << std::endl;
return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Winter 2021L07: C++ Intro

Hello World in C++

 std::cout is the “cout” object in the “std”
namespace (declared by iostream)
 C++’s name for stdout

 std:cout is an object of class ostream
• http://www.cplusplus.com/reference/ostream/ostream/

 The entire standard library is in the namespace std

26

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
std::cout << "Hello, World!" << std::endl;
return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Winter 2021L07: C++ Intro

Hello World in C++

 C++ distinguishes between objects and primitive types
 These include the familiar ones from C:
char, short, int, long, float, double, etc.

 C++ also defines bool as a primitive type
• But bool and int values silently convert types for compatiblity with C

27

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
std::cout << "Hello, World!" << std::endl;
return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Winter 2021L07: C++ Intro

Hello World in C++

 “<<” is an operator defined by the C++ language
 Defined in C as well: it bit-shifts integers in C (and C++)

 C++ allows classes and functions to overload operators!
• Here, the ostream class overloads “<<”

28

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
std::cout << "Hello, World!" << std::endl;
return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Winter 2021L07: C++ Intro

Operators in C++ (preview)

 In C++, everything is a function call (only kind of true)

 In C:
LinkedList_Append(&list, payload)

 In Java:
list.append(payload)

 In C++:
list.append(payload) // append is a binary function

or
list + payload // “+” is the name of a binary function

29

CSE333, Winter 2021L07: C++ Intro

Hello World in C++

 “<<” is an operator defined by the C++ language
 Defined in C as well: it bit-shifts integers in C (and C++)

 Here, the ostream class defines the function “<<” when a char*
is given as the (second) input

30

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
std::cout << "Hello, World!" << std::endl;
return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Winter 2021L07: C++ Intro

Hello World in C++

 The ostream class’ member functions that handle <<
return a reference to themselves
 When std::cout << "Hello, World!"; is evaluated:

• A member function of the std::cout object is invoked

• It buffers the string "Hello, World!" to stdout

• It returns (a reference to) std::cout
– “method chaining”

31

std::cout << "Hello, World!";

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
std::cout << "Hello, World!" << std::endl;
return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Winter 2021L07: C++ Intro

Hello World in C++

 Next, another member function on std::cout is
invoked to handle << with RHS std::endl
 std::endl is a pointer to a “manipulator” function

• This manipulator function writes newline ('\n') to the ostream it
is invoked on and then flushes the ostream’s buffer

• This enforces that something is printed to the console at this point

32

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
std::cout << "Hello, World!" << std::endl;
return EXIT_SUCCESS;

}

helloworld.cc

CSE333, Winter 2021L07: C++ Intro

With Objects

 C++’s standard library has a std::string class
 Include the string header to use it

 http://www.cplusplus.com/reference/string/

#include <iostream>
#include <cstdlib>
#include <string>

int main(int argc, char** argv) {
std::string hello("Hello, World!");
std::cout << hello << std::endl;
return EXIT_SUCCESS;

}

helloworld2.cc

33

CSE333, Winter 2021L07: C++ Intro

With Objects

 Here we are instantiating a std::string object on the
stack (an ordinary local variable)
 Passing the C string "Hello, World!" to its constructor

 Don’t have to “new” to create an object

 hello is deallocated (and its destructor invoked) when main
returns

34

#include <iostream>
#include <cstdlib>
#include <string>

int main(int argc, char** argv) {
std::string hello("Hello, World!");
std::cout << hello << std::endl;
return EXIT_SUCCESS;

}

helloworld2.cc

CSE333, Winter 2021L07: C++ Intro

With Objects

 The C++ string library also overloads the << operator
 Defines a function that is invoked when the LHS is ostream and

the RHS is std::string
• http://www.cplusplus.com/reference/string/string/operator<</

 We’ll look at this in detail later…
35

#include <iostream>
#include <cstdlib>
#include <string>

int main(int argc, char** argv) {
std::string hello("Hello, World!");
std::cout << hello << std::endl;
return EXIT_SUCCESS;

}

helloworld2.cc

CSE333, Winter 2021L07: C++ Intro

using namespace std;

 The using keyword introduces a namespace (or part of)
into the current region
 using namespace std; imports all names from std::

 using std::cout; imports only std::cout
(used as cout)

36

using namespace std;

using std::cout;

#include <iostream>
#include <cstdlib>
#include <string>

using namespace std;

int main(int argc, char** argv) {
string hello("Hello, World!");
cout << hello << endl;
return EXIT_SUCCESS;

}

helloworld2.cc

CSE333, Winter 2021L07: C++ Intro

using namespace std;

 We can now refer to std::string as string, std::cout
as cout, and std::endl as endl
• Google style guide says never use using namespace, only using

for individual items

• using namespace std; is used, a lot

• Eschew using it…

37

#include <iostream>
#include <cstdlib>
#include <string>

using namespace std;

int main(int argc, char** argv) {
string hello("Hello, World!");
cout << hello << endl;
return EXIT_SUCCESS;

}

helloworld2.cc

CSE333, Winter 2021L07: C++ Intro

String Concatenation

 The string class overloads the “+” operator with argument
of type char*

 Apparently just like Java!
 The effect is just what you expect

 Except some much more complicated things are actually going
on…

#include <iostream>
#include <cstdlib>
#include <string>

int main(int argc, char** argv) {
std::string hello("Hello");
hello = hello + ", World!";
std::cout << hello << std::endl;
return EXIT_SUCCESS;

}

concat.cc

38

CSE333, Winter 2021L07: C++ Intro

String Assignment

 The string class overloads the “=” operator

 The effect is just like Java!
 What is happening is more complicated…

#include <iostream>
#include <cstdlib>
#include <string>

int main(int argc, char** argv) {
std::string hello("Hello");
hello = hello + ", World!";
std::cout << hello << std::endl;
return EXIT_SUCCESS;

}

concat.cc

39

CSE333, Winter 2021L07: C++ Intro

Alternate Syntax
#include <iostream>
#include <cstdlib>
#include <string>

int main(int argc, char** argv) {
std::string hello("Hello");
hello = hello + ", World!";
std::cout << hello << std::endl;
return EXIT_SUCCESS;

}

concat.cc

40

hello.operator=(hello.operator+(", World!"));

CSE333, Winter 2021L07: C++ Intro

Stream Manipulators

 iomanip defines a set of stream manipulator functions
 Pass them to a stream to affect formatting

• http://www.cplusplus.com/reference/iomanip/

• http://www.cplusplus.com/reference/ios/

#include <iostream>
#include <cstdlib>
#include <iomanip>

int main(int argc, char** argv) {
std::cout << "Hi! " << std::setw(4) << 5

<< " " << 5 << std::endl;
cout << std:: hex << 16 << " " << 13 << std:: endl;
cout << std:: dec << 16 << " " << 13 << std:: endl;
return EXIT_SUCCESS;

}

manip.cc

41

CSE333, Winter 2021L07: C++ Intro

#include <iostream>
#include <cstdlib>
#include <iomanip>

int main(int argc, char** argv) {
std::cout << "Hi! " << std::setw(4) << 5

<< " " << 5 << std::endl;
cout << std:: hex << 16 << " " << 13 << std:: endl;
cout << std:: dec << 16 << " " << 13 << std:: endl;
return EXIT_SUCCESS;

}

Stream Manipulators

 setw(x) sets the width of the next field to x
 Only affects the next thing sent to the output stream (i.e. it is not

persistent)

manip.cc

42

CSE333, Winter 2021L07: C++ Intro

#include <iostream>
#include <cstdlib>
#include <iomanip>

int main(int argc, char** argv) {
std::cout << "Hi! " << std::setw(4) << 5

<< " " << 5 << std::endl;
cout << std:: hex << 16 << " " << 13 << std:: endl;
cout << std:: dec << 16 << " " << 13 << std:: endl;
return EXIT_SUCCESS;

}

Stream Manipulators

 hex, dec, and oct set the numerical base for integer
output to the stream
 Stays in effect until you set the stream to another base (i.e., it is

persistent)

manip.cc

43

CSE333, Winter 2021L07: C++ Intro

C and C++

 C is (roughly) a subset of C++
 You can still use printf – but bad style in ordinary C++ code

 Can mix C and C++ idioms if needed to work with existing code,
but avoid mixing if you can
• Use C++(17)

#include <cstdio>
#include <cstdlib>

int main(int argc, char** argv) {
printf("Hello from C!\n");
return EXIT_SUCCESS;

}

helloworld3.cc

44

CSE333, Winter 2021L07: C++ Intro

Reading Input

 std::cin is an object instance of class istream
 Supports the >> operator for “extraction”

• Can be used in conditionals – (std::cin>>num) is true if successful
– How is that possible?

 Has a getline() method and methods to detect and clear errors

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
int num;
std::cout << "Type a number: ";
std::cin >> num;
std::cout << "You typed: " << num << std::endl;
return EXIT_SUCCESS;

}

echonum.cc

45

