
CSE333, Winter 2021L05: C Stream Processing

C Wrapup
CSE 333 Winter 2021
C Wrapup
CSE 333 Winter 2021

Instructor: John Zahorjan

Teaching Assistants:

Matthew Arnold Nonthakit Chaiwong Jacob Cohen

Elizabeth Haker Henry Hung Chase Lee

Leo Liao Tim Mandzyuk Benjamin Shmidt

Guramrit Singh

CSE333, Winter 2021L05: C Stream Processing

Programming Languages
 How quickly can I write a correct program?

 Expressiveness

 Available libraries?

 How hard is it to write an (obviously) incorrect program?
 “Language analysis”

 How efficient is the executable?
 Algorithmic efficiency

 Code efficiency

 How portable is my program?
 Different hardware? Different OS?

2

CSE333, Winter 2021L05: C Stream Processing

More Programming System Considerations

 How hard is it to interact with code written in other
languages?

 How well does language support teams of programmers?
 How well does development environment support teams?

 How well does build support teams?

 Language and parallel/distributed execution?

 Portability of executable?
 Virtual machines

 Containers

3

CSE333, Winter 2021L05: C Stream Processing

Programming Languages
Assembler C Java

Expressiveness 0 4 8

Language analysis 0 4 7

Executable Efficiency 8 9 6

Portability 0 6 10

Flexibility 9 8 4

4

Sum 1000000 random long’s 1000 times:
• Assembler – sorry, didn’t implement it
• C – 0.293 seconds
• Java long – 0.466 seconds
• Java Long – 13.553 seconds

CSE333, Winter 2021L05: C Stream Processing

Programming Languages (Aside)

5

Sum 1000000 random long’s 1000 times:
• Assembler – sorry, didn’t implement it
• C – 0.293 seconds
• C++ - 0.289 seconds
• Java long – 0.466 seconds
• Java Long – 13.553 seconds

Assembler C Java C++

Expressiveness 0 4 7 8.5

Language analysis 0 4 7 6.5

Executable Efficiency 8 9 6 10

Portability 0 6 10 8.5

Flexibility 9 8 4 7

CSE333, Winter 2021L05: C Stream Processing

C Expressiveness
 You get memory allocation (static/heap/global variables)

 You get basic control flow (loops)

 You get functions / procedures

 You get primitive support to generate specialized code
(preprocessor)

 Single, global name space (for global vars and all functions)

 No language support for program structuring beyond
procedures

 No language support for generics

 No (real) language support for information hiding

 No memory management
6

CSE333, Winter 2021L05: C Stream Processing

Language Analysis

 C is intended to allow (near direct) access to hardware
 Can operate “below the semantics of the language” to directly

modify memory, for instance

 That makes program analysis difficult
 What could a pointer be pointing at in this line of code?

 The compiler thinks pretty much every syntactically
correct statement is semantically correct

 The language tolerates (embraces?) that many things that
can be said, legally, have undefined result

7

CSE333, Winter 2021L05: C Stream Processing

Execution Efficiency

 A general lesson: simplest is fastest
 C makes close to no promises (vs. Java…)

 There are no run-time checks, unless you program them
 There is no run-time interpreter

 “All the action” is static (at compile time)

 The optimizer is very good at what it does
 Constant propagation

 Re-ordering code

 Dead code elimination

8

CSE333, Winter 2021L05: C Stream Processing

Portability
 C standards

 Standard library / system calls

 App code must be recompiled on target system

 App code must be linked with implementation of standard
functions written for target system

9

CSE333, Winter 2021L05: C Stream Processing

Portability
 Things That Go Wrong
 Library functions, including std lib functions, don’t exist or have different

semantics
• especially with reflecting errors

 The program has hardware dependences
• E.g., size of a long int

• size of a pointer

• addresses that indicate stack allocation (vs. heap)

 Code has a bug that is benign on original system but un-benign on new
system
• E.g., write past end of an array

• Note: this can make code non-portable from one version of
compiler/language to the next!

 Example: Why does course project require gcc 9?

10

CSE333, Winter 2021L05: C Stream Processing

Flexibility

 Can I integrate my code written in some language with
code written in another?
 Sure – files, text output, etc.

 C is a de facto lowest common denominator
 Languages often have tools that let them interact with (and so

use) libraries written in C

11

