
CSE333, Winter 2021L05: C Stream Processing

C Wrapup
CSE 333 Winter 2021
C Wrapup
CSE 333 Winter 2021

Instructor: John Zahorjan

Teaching Assistants:

Matthew Arnold Nonthakit Chaiwong Jacob Cohen

Elizabeth Haker Henry Hung Chase Lee

Leo Liao Tim Mandzyuk Benjamin Shmidt

Guramrit Singh

CSE333, Winter 2021L05: C Stream Processing

Programming Languages
 How quickly can I write a correct program?

 Expressiveness

 Available libraries?

 How hard is it to write an (obviously) incorrect program?
 “Language analysis”

 How efficient is the executable?
 Algorithmic efficiency

 Code efficiency

 How portable is my program?
 Different hardware? Different OS?

2

CSE333, Winter 2021L05: C Stream Processing

More Programming System Considerations

 How hard is it to interact with code written in other
languages?

 How well does language support teams of programmers?
 How well does development environment support teams?

 How well does build support teams?

 Language and parallel/distributed execution?

 Portability of executable?
 Virtual machines

 Containers

3

CSE333, Winter 2021L05: C Stream Processing

Programming Languages
Assembler C Java

Expressiveness 0 4 8

Language analysis 0 4 7

Executable Efficiency 8 9 6

Portability 0 6 10

Flexibility 9 8 4

4

Sum 1000000 random long’s 1000 times:
• Assembler – sorry, didn’t implement it
• C – 0.293 seconds
• Java long – 0.466 seconds
• Java Long – 13.553 seconds

CSE333, Winter 2021L05: C Stream Processing

Programming Languages (Aside)

5

Sum 1000000 random long’s 1000 times:
• Assembler – sorry, didn’t implement it
• C – 0.293 seconds
• C++ - 0.289 seconds
• Java long – 0.466 seconds
• Java Long – 13.553 seconds

Assembler C Java C++

Expressiveness 0 4 7 8.5

Language analysis 0 4 7 6.5

Executable Efficiency 8 9 6 10

Portability 0 6 10 8.5

Flexibility 9 8 4 7

CSE333, Winter 2021L05: C Stream Processing

C Expressiveness
 You get memory allocation (static/heap/global variables)

 You get basic control flow (loops)

 You get functions / procedures

 You get primitive support to generate specialized code
(preprocessor)

 Single, global name space (for global vars and all functions)

 No language support for program structuring beyond
procedures

 No language support for generics

 No (real) language support for information hiding

 No memory management
6

CSE333, Winter 2021L05: C Stream Processing

Language Analysis

 C is intended to allow (near direct) access to hardware
 Can operate “below the semantics of the language” to directly

modify memory, for instance

 That makes program analysis difficult
 What could a pointer be pointing at in this line of code?

 The compiler thinks pretty much every syntactically
correct statement is semantically correct

 The language tolerates (embraces?) that many things that
can be said, legally, have undefined result

7

CSE333, Winter 2021L05: C Stream Processing

Execution Efficiency

 A general lesson: simplest is fastest
 C makes close to no promises (vs. Java…)

 There are no run-time checks, unless you program them
 There is no run-time interpreter

 “All the action” is static (at compile time)

 The optimizer is very good at what it does
 Constant propagation

 Re-ordering code

 Dead code elimination

8

CSE333, Winter 2021L05: C Stream Processing

Portability
 C standards

 Standard library / system calls

 App code must be recompiled on target system

 App code must be linked with implementation of standard
functions written for target system

9

CSE333, Winter 2021L05: C Stream Processing

Portability
 Things That Go Wrong
 Library functions, including std lib functions, don’t exist or have different

semantics
• especially with reflecting errors

 The program has hardware dependences
• E.g., size of a long int

• size of a pointer

• addresses that indicate stack allocation (vs. heap)

 Code has a bug that is benign on original system but un-benign on new
system
• E.g., write past end of an array

• Note: this can make code non-portable from one version of
compiler/language to the next!

 Example: Why does course project require gcc 9?

10

CSE333, Winter 2021L05: C Stream Processing

Flexibility

 Can I integrate my code written in some language with
code written in another?
 Sure – files, text output, etc.

 C is a de facto lowest common denominator
 Languages often have tools that let them interact with (and so

use) libraries written in C

11

