
CSE333, Winter 2021L02: Memory, Arrays

The C Standard Library
CSE 333 Winter 2021
The C Standard Library
CSE 333 Winter 2021

Instructor: John Zahorjan

Teaching Assistants:

Matthew Arnold Nonthakit Chaiwong Jacob Cohen

Elizabeth Haker Henry Hung Chase Lee

Leo Liao Tim Mandzyuk Benjamin Shmidt

Guramrit Singh

CSE333, Winter 2021L02: Memory, Arrays

Language Semantics and Extensibility

 The “C language” specifies what statements in the
language mean – it’s syntax and semantics.

 A C compiler translates statements in the C language into
assembler/machine code whose effect is the same as the
meaning of the C statements

 Functions/subroutines are an “extensibility mechanism”
 They’re a way to introduce new statement meanings

 As in other languages, a C program uses a combination of
language features and functions
 Functions are often distributed as libraries

2

CSE333, Winter 2021L02: Memory, Arrays

C Standard Library

 From Wikipedia:
https://en.wikipedia.org/wiki/C_standard_library

 The C standard library or libc is the standard library for
the C programming language, as specified in the ISO
C standard.[1] Starting from the original ANSI C standard,
it was developed at the same time as the C library POSIX
specification, which is a superset of it.[2][3] Since ANSI C
was adopted by the International Organization for
Standardization,[4] the C standard library is also called
the ISO C library.

3

CSE333, Winter 2021L02: Memory, Arrays

What Did That Mean
 There are many C compilers, so…

 Define a standard set of useful functions that all of them should/must
implement
 That way, if you implement your app using only C language and standard library

functions, your code is “portable” (by re-compiling/re-linking)

 But…

 There’s more than one standard, and…

 It’s common for individual compilers/systems to provide supersets of the
standard
 When a program uses one of the extended functions, it’s no longer portable

 What standard a standard library function is standard in doesn’t leap up off
the man page

4

CSE333, Winter 2021L02: Memory, Arrays

man strchr
 STRCHR(3) Linux Programmer's Manual STRCHR(3)

 NAME

 strchr, strrchr, strchrnul - locate character in string

 SYNOPSIS

 #include <string.h>

 char *strchr(const char *s, int c);

 char *strrchr(const char *s, int c);

 #define _GNU_SOURCE /* See feature_test_macros(7) */

 #include <string.h>

 char *strchrnul(const char *s, int c);

 …

 CONFORMING TO

 strchr(), strrchr(): POSIX.1-2001, POSIX.1-2008, C89, C99, SVr4, 4.3BSD.

 strchrnul() is a GNU extension.

5

CSE333, Winter 2021L02: Memory, Arrays

Function vs. Macro vs. Compiler Internal

 A standard function can be a normal function, written in C
(or assembler)
 Invoking it requires a procedure call (which is expensive)

 A standard function can be implemented as a pre-
processor macro
 Invoking the function results in code being inserted into your

program

 No procedure call overhead

 The compiler can internalize standard functions and emit
code for them
 Similar in intent to the pre-processor macro approach

6

CSE333, Winter 2021L02: Memory, Arrays

#include <stdio.h>

 printf / fprintf / sprintf
 Print to stdout, a particular file, or a string (array of char)

 It’s printing, it’s also conversion to string

 Returns number of bytes printed

 scanf / fscanf / sscanf
 Read from stdin, a particular file, or the contents of an array of

char

 It’s conversion from “string” to other data types

 Returns number of items read

 fopen / fclose (vs. open / close)
 Open/close file for “buffered reading”

7

CSE333, Winter 2021L02: Memory, Arrays

8

CSE333, Winter 2021L02: Memory, Arrays

#include <stdio.h>
 fread / fwrite

 fseek / fgetpos

 feof / ferror

 fflush

 getchar / getc / fgetc / putchar / putc / fputc

 Ungetc

 gets / fgets / puts / fputs

 perror (for system error returns)

9

(byte) buffer

CSE333, Winter 2021L02: Memory, Arrays

#include <string.h>

 strlen

 strcpy / strncpy / strcat / strncat

 strcmp (returns -1, 0, or 1 for less than, equal, greater than)

 strchr / strstr / strrchr / strrstr

 strtok

 strerror (for system errors)

 memcpy / memove

 memcmp / memmem

 memset

10

CSE333, Winter 2021L02: Memory, Arrays

#include <stdlib.h>

 atoi / atol / atof

 strtol / strtoul / strtod (like above, but better able to indicate errors)

 malloc / calloc / realloc / free

 getenv / setenv

 system (causes execution of a command as thought it were given to a shell)

 qsort / bsearch

11

CSE333, Winter 2021L02: Memory, Arrays

#include <assert.h>
 assert
 int getX(MyType *pObj) {

assert(pObj != NULL);
…

 assert() is a pre-processor macro

 If symbol NDEBUG is NOT defined, preprocessor produces code
that tests condition and complains/exits if it’s false

 If symbol NDEBUG is defined, the preprocessor emits nothing
 So, no run time overhead (e.g., to test the condition)

 Let’s you leave debugging code in your code without
performance penalty

 Warning: do not use assert for essential sanity checks
12

CSE333, Winter 2021L02: Memory, Arrays

#include <limits.h>

 CHAR_MIN / CHAR_MAX / UCHAR_MAX

 INT_MIN / INT_MAX / UINT_MAX

 LONG_MIN / LONG_MAX / ULONG_MAX

 Etc.

13

CSE333, Winter 2021L02: Memory, Arrays

#include <math.h>

 acos / asin / atan / cos / cosh / sin /sinh/ tanh

 exp / log / log10

 pow / sqrt / floor / fmod

 …

14

CSE333, Winter 2021L02: Memory, Arrays

#include <ctype.h>

 isupper / islower / toupper / tolower

 isalpha / isdigit / isalnum / ispunct / isspace / ispunct

15

CSE333, Winter 2021L02: Memory, Arrays

#include <time.h>

 Current time

 Elapsed time

16

CSE333, Winter 2021L02: Memory, Arrays

#include <errno.h>
 extern int errno;

 Many routines that can fail in different ways don’t/can’t indicate just how
they failed
 Perhaps they just return NULL to indicate unhappy, but that’s only one value for

everything that can go wrong

 “The fopen(), fdopen() and freopen() functions may also fail and set errno for
any of the errors specified for the routine malloc(3).”

 Many of these routines set this global (errno) to an error specific value

 perror() will print a string representation of the error

 strerror() will provide a string representation of the error

17

C doesn’t have exceptions

CSE333, Winter 2021L02: Memory, Arrays

Additional errno details

 From the man page:
 The value in errno is significant only when the return value of the call indicated

an error (i.e., -1 from most system calls; -1 or NULL from most library
functions); a function that succeeds is allowed to change errno. The value of
errno is never set to zero by any system call or library function.

 errno is defined by the ISO C standard to be a modifiable lvalue of type int,
and must not be explicitly declared; errno may be a macro. errno is thread-local;
setting it in one thread does not affect its value in any other thread.

18

CSE333, Winter 2021L02: Memory, Arrays

#include <stdarg.h>
 For “variadic” methods like

int printf(const char*, …);

 va_start , va_arg, va_end

 This is a pretty terrible idea…
 “If there is no next argument, or if type is not compatible with the type of the actual next argument

(as promoted according to the default argument promotions), random errors will occur.”

 “If ap is passed to a function that uses va_arg(ap,type) then the value of ap is undefined after the
return of that function.”

 Although at the same time it seems natural enough. Cf. printf().

19

va_list ap;
va_start(ap, last_named_parameter);
while (i = va_arg(ap, int)) { … }
va_end(ap);

CSE333, Winter 2021L02: Memory, Arrays

Aside: Method Polymorphism
 Polymorphism: the ability to associate a single name with

many different types (here, of functions)
 Java Example: void update(int); and void update(String);

 Example: any base class method overridden by derived class

 C does not have method polymorphism
 All method names are in the global namespace

 There can be only one defined object with a particular name in a single
namespace

 C approximations
 function pointers, if all instances have the same arg list and return type

 va_start, va_arg, va_end

20

CSE333, Winter 2021L02: Memory, Arrays

Static vs. Dynamic Polymorphism
 “Static”: at compile time
 no runtime overhead

 update(6) / update(“new address”)
• Compiler can “see” which version you want by the argument types

 “Dynamic”: at run time
 Not always possible to determine at compile time what the argument

types will be

 In Java, dynamic dispatch is implemented by the compiler / JVM
• Reliable

 In C, you’re given some hammers and nails and allowed to build
whatever you want

21

CSE333, Winter 2021L02: Memory, Arrays

#include <unistd.h>
 “The <unistd.h> header defines miscellaneous symbolic constants and

types, and declares miscellaneous functions.”
 POSIX OS API

 int access(const char *, int);
unsigned alarm(unsigned);
int chdir(const char *);
int chown(const char *, uid_t, gid_t);
int close(int);
size_t confstr(int, char *, size_t);
char *crypt(const char *, const char *);
int dup(int);
int dup2(int, int);
void _exit(int);
void encrypt(char [64], int);
int execl(const char *, const char *, ...);
Etc.

22

CSE333, Winter 2021L02: Memory, Arrays

#include <unistd.h>
 getopt and getoptlong
 For processing command line arguments

 Crude example:

23

while ((c = getopt (argc, argv, "abc:")) != -1)
switch (c)

{
case 'a': aflag = 1;

break;
case 'b': bflag = 1;

break;
case 'c': cvalue = optarg;

break;
case '?': if (optopt == 'c') fprintf (stderr, "Option -%c requires an argument.\n", optopt);

else if (isprint (optopt)) fprintf (stderr, "Unknown option `-%c'.\n", optopt);
else fprintf (stderr, "Unknown option character `\\x%x'.\n", optopt);
return 1;

default: abort ();
} https://www.gnu.org/software/libc/manual/html_node/Example-of-Getopt.html

CSE333, Winter 2021L02: Memory, Arrays

#include <unistd.h>

 Provides a second interface to streams (files)
 The other was <stdio.h> which provides FILE*

 This is the “hammer and nails” interface

 int open(const char *pathname, int flags, mode_t mode);
ssize_t read(int fd, void *buf, size_t count);
ssize_t write(int fd, const void *buf, size_t count);
int close(int fd);
...

24

