
CSE333, Winter 2021L02: Memory, Arrays

ex04
CSE 333 Winter 2021
ex04
CSE 333 Winter 2021

Instructor: John Zahorjan

Teaching Assistants:

Matthew Arnold Nonthakit Chaiwong Jacob Cohen

Elizabeth Haker Henry Hung Chase Lee

Leo Liao Tim Mandzyuk Benjamin Shmidt

Guramrit Singh

It’s more complicated than
I thought…

CSE333, Winter 2021L02: Memory, Arrays

What You Have to Do

1. Figure out how to implement memove and then
implement memmove

2. Figure out how to use the timer library

3. Write driver/test code to call and time memmove

4. Figure out how to build your code with the timer class

5. Figure out to build your code to use either your
memmove or the built-in memmove

2

CSE333, Winter 2021L02: Memory, Arrays

1. Figure out how to implement memmove

 Hints:
 none

3

CSE333, Winter 2021L02: Memory, Arrays

2. Figure out how to use the timer library

 Hints:
 The library distributes a test program that shows how to use the

library

 You build the test program using the makefile distributed with the
library

4

CSE333, Winter 2021L02: Memory, Arrays

3. Write driver/test code to call memmove

 Hints:
 From the write-up: characterize performance by throughput

measured in MB/sec. moved

 Does performance depend on the arguments to memmove? If so,
you might want to measure at least a few distinct scenarios. (This
isn’t the main point of the exercise, though.)

5

CSE333, Winter 2021L02: Memory, Arrays

4. Figure out how to build you code…

 Hints:
 The test program and makefile that come with the library not only

show how to use the library but how to build an app that uses the
library

6

CSE333, Winter 2021L02: Memory, Arrays

5. Figure out how to build your app using either
your memmove or built-in memmove

 Unexpected problem: the compiler seems to know what
memmove is

7

234567890j
334567890j

Output:

CSE333, Winter 2021L02: Memory, Arrays

$ gcc –O0 –S test.c

8

int main(int argc, char *argv[])

char src_buffer[] = "1234567890";
‘87654321’
‘90’
‘\0’

char dest_buffer[] = “abcdefghij";

memmove(dest_buffer, src_buffer+1, 9);

move 8 bytes

move 9th byte

printf(“%s\n”, dest_buffer);

memmove(dest_buffer, src_buffer+1, argc);

!!!

printf(“%s\n”, dest_buffer);

CSE333, Winter 2021L02: Memory, Arrays

$ gcc –O3 –S test.c

9

CSE333, Winter 2021L02: Memory, Arrays

So, What To Do?

 Looks like link time is too late to make a decision about
which version of memmove to use because the compiler
will already have decided by then

 But, we “must” make the decision about which version to
use something that happens at build time
 Can’t modify source, but…

 Can modify compile commands, and…

 Can modify link command

10

CSE333, Winter 2021L02: Memory, Arrays

Link Time Control
 This was the original intent…

 Our app calls memmove

 If we link the app with our implementation of memmove, the linker connects the
calls to our implementation

 If we fail to provide our implementation, the linker connects the calls to the
standard implementation

 Instead, the app makes a call to some different method name, like, say,
MEMMOVE_CHOICE()

 We create two different versions of MEMMOVE_CHOICE, one that is our
implementation of memmove and one that just invokes standard
memmove

 Downside: Performance
 Compiler can’t do the opimizations we just saw with memove invoked in this way

 We added an extra procedure call to each invocation of memmove

11

CSE333, Winter 2021L02: Memory, Arrays

Compile Time Control
 Like before, we write in our code calls to some name that isn’t

memmove – say, MEMMOVE_CHOICE

 Then we use the pre-processor to convert the string
“MEMMOVE_CHOICE” to either “memmove” (for standard
version) or “my_memmove” (or whatever, for our version)
 If memmove, compiler can optimize exactly as if we had hard-coded a

call to memmove

 gcc –DMEMMOVE_CHOICE=my_memmove –std=c17 *.c

 Note: Need to create a .h file my_memmove and include it in
the app code

12

CSE333, Winter 2021L02: Memory, Arrays

The Timer Library

 The timer library uses this technique, but for a related but
different reason
 They supply a test app with the library and a makefile

 The makefile builds four versions of the test app
 [attu4] ex04/c-timer-lib-master> make

gcc -g -Wall -Wextra -std=gnu99 -c timer.c
gcc -g -Wall -Wextra -std=gnu99 test.c timer.o -o test_s.out -DUNITS="s“
gcc -g -Wall -Wextra -std=gnu99 test.c timer.o -o test_ms.out -DUNITS="ms“
gcc -g -Wall -Wextra -std=gnu99 test.c timer.o -o test_ns.out -DUNITS="us“
gcc -g -Wall -Wextra -std=gnu99 test.c timer.o -o test_mis.out -DUNITS="ns"

13

CSE333, Winter 2021L02: Memory, Arrays

Test.c Timer.h
#ifndef UNITS
#define UNITS s
#endif
int main()
{

interval_t * a;
interval_t * b;
interval_t * c;

create_interval(&a, "Test 1", mono, UNITS);
create_interval(&b, "Test 2", mono, UNITS);
create_interval(&c, "Test 3", mono, UNITS);

14

/* Enum of time units */
typedef enum
{

s, // seconds
ms, // milli-seconds
us, // micro-seconds
ns, // nano-seconds
unit_check, // used for enum check
none // use the intervals unit

} unit_e;

int create_interval(interval_t ** tmp,
char * name,
clock_e ck,
unit_e ut

);

