
CSE333, Winter 2021L02: Memory, Arrays

Values, Operators, Variables
CSE 333 Winter 2021
Values, Operators, Variables
CSE 333 Winter 2021

Instructor: John Zahorjan

Teaching Assistants:

Matthew Arnold Nonthakit Chaiwong Jacob Cohen

Elizabeth Haker Henry Hung Chase Lee

Leo Liao Tim Mandzyuk Benjamin Shmidt

Guramrit Singh

CSE333, Winter 2021L02: Memory, Arrays

Preliminaries
 C is beautiful

 What does that mean?
 A very few, pretty simple concepts are all it has/needs

 It uses those simple concepts to enable “natural ways of writing things” – ways
programmers were already accustomed to

 Aside: if simple is beautiful than complicated must be un-beautiful
 Special cases are complicated – avoid them

 If…then…else is complicated – avoid them
• Especially nested ones

 A method with multiple return statements is complicated

 Scattering declarations throughout your code is complicated – put them at the
top

2

CSE333, Winter 2021L02: Memory, Arrays

Preliminaries
 Complex vs. Non-Complex

 The more you have to know about the rest of the code and the dynamic state of the
execution to understand that some statement is correct, the worse the code

 C provides mechanisms

 It relies on conventions
 A trivial example: “every” main() checks the number of arguments and calls a function

whose name is usage() if something looks wrong

 It’s not part of the language; not built into compilers; not enforced in any way

 When you read someone else’s code and you see a call to usage(), you know what it’s
doing

 C mechanisms don’t make it impossible to write correct code

 Most of the time, if you follow the conventions, the code looks pretty
“normal”

3

CSE333, Winter 2021L02: Memory, Arrays

Expressions
 An expression is something that can be evaluated to

produce a value
 6 + 10 / 3

• 10 / 3 evaluates to 3 => 6 + 3 => 9

 A literal is a simple value, known at coding time
 6

 ‘c’

 How did I decide that 10 / 3 evaluated to 3?
 I did integer division. Why?

 It isn’t the symbol ‘/’ telling me to do integer division, it’s the type
of the operands to the ‘/’ operation

4

CSE333, Winter 2021L02: Memory, Arrays

Operators / Functions

 An expression can be just a literal

 Expressions often involve operators/functions:
 6 + 10 / 3

 6 + gcd(98, 32)

 Functions and operators are very similar, even if the
syntax looks different

 Both take inputs of certain type(s) and “return” a value of
a certain type

 In C, the type returned can be determined at compile time

 This is all that type checking means in C…

5

CSE333, Winter 2021L02: Memory, Arrays

Beautiful or Bizarre?
Assignment Statements

 C doesn’t have assignment statements
 It has an assignment operator

 It’s very low precedence

 x = y + 2;
 Normal; looks like “an assignment statement”

 x = y = 2 + z;
 Totally legal

 2+z;
 Totally legal (but the compiler might helpfully issue a warning)

6

CSE333, Winter 2021L02: Memory, Arrays

What Does ‘=‘ Mean in C?

 Assignment is about copying the contents of memory
from someplace to someplace else
 (Technical detail: sometimes “memory” is a register)

 Let’s consider the general form: lhs = expression;

 The lhs has to be “an lvalue” – something that can be
assigned to
 X // a simple variable

 Array[4] // this means what you think, but is a pointer dereference (later…)

 The lhs has a type, and the type has a size
 That’s how many bytes are going to be copied

7

CSE333, Winter 2021L02: Memory, Arrays

Type Conversion
 The expression on the right-hand-side (rhs) is evaluated
 The result is a value of some type

 That type has a size

 That type may not be the same as the type of the lhs

 IF the lhs and the rhs have the same type, then they’re of
the same size and C generates code to copy bytes

 If the lhs and rhs are of different types, there are two
possibilities
1. C converts the type of the rhs quantity to the type of the lhs

2. You get a compile time error

 C really doesn’t like to issue compile time errors…

8

CSE333, Winter 2021L02: Memory, Arrays

Examples

 int x = 20;
int y = x * 2;
 4 bytes are allocated on stack for x, and 4 for y

 Code is generated to move the small integer 20 to the 4 bytes
named x

 Code is generated to fetch the four bytes named x into a register,
shift the register left one bit (multiply by 2), and then copy the 4
bytes in the register to the four bytes named y

9

CSE333, Winter 2021L02: Memory, Arrays

Examples

 int x = 20;
float y = x * 2;
 What happens with x is as before

 C understands that simply copying the bits that result from x*2
into y wouldn’t be a good idea, even though y is 4 bytes

 So, C does an implicit cast, generating code that converts the
integer result of x*2 to its float representation
• And then copies the four bytes of that float to y

 int x = ‘0’;
 C generates code that extends the 8 bits representing ‘0’ to 32

bits, then moves them into the 4 bytes named x

10

CSE333, Winter 2021L02: Memory, Arrays

Assignment and Implicit Conversions

 The rules about implicit conversion are complicated

 There are lots of them

 Mostly, they “just work”…
 You get what you expect, mostly

 I’m not going to try to go over them in class

 It is hard to generate an example of an assignment to an
int variable that causes a compile time error

 It’s easy to generate examples that don’t do what you
probably think, though

11

CSE333, Winter 2021L02: Memory, Arrays

Summary So Far

 lhs = rhs
 The lhs names some memory where values will be written

 The rhs identifies a value

 x = x
 The ‘x’ on the lhs means the address that x represents

 The ‘x’ on the rhs means the last value assigned to x

 This is ALWAYS what assignment means in C, even when it
may not seem like it
 And even when you want it to mean something different

 (Aside: passing an argument to a function is assignment)

12

CSE333, Winter 2021L02: Memory, Arrays

Array in C

 Originally, C didn’t have arrays
 But it has always had syntax that looked just like arrays

• E.g., x[4] = x[5] + 1;

 These days the compiler knows something about arrays
 E.g., you probably used sizeof() on a thing we’d call an array in

ex01

13

CSE333, Winter 2021L02: Memory, Arrays

Arrays in General
 An array is a data structure whose keys are consecutive

non-negative integers and that can perform lookup in
constant time

 The implementation requires as many consecutive bytes
in memory as the total size of the array
 int example[100]; // requires 400 consecutive bytes

 The consecutive bytes allow constant time lookup
 array[n] is located at

• The starting address of the elements of array plus

• n * the number of bytes required for each element

 Example: array[10] is at starting address of array + 40 if array
holds ints

14

CSE333, Winter 2021L02: Memory, Arrays

C and Arrays
 C has something that works just like an array if you use it

without error

 If your code has errors, though, what it does is undefined

 If you write array[n] = 0, C will generate code that assigns
0 to the four bytes in memory at address “starting address
of array + n*4” (assuming array hold ints)

 What if n == -3?
 “undefined”

 In practice, you’ll be operating on the bytes at offset -12 from the
start of the array

 Those bytes are likely some other variable in your program

15

CSE333, Winter 2021L02: Memory, Arrays

C and Arrays

 Sure, C could check that n was in bounds
 It can’t check at compile time, though

 It would have to generate code to check during execution

 But that would slow down every C program, including those that
didn’t contain any array bound errors

 So… you write code yourself to check array bounds if
you’re worried your code isn’t right
 Don’t make every program pay the penalty

 There are, of course, libraries that will provide an array
bounds checked array
 And you can just write code yourself, maybe more simply

16

CSE333, Winter 2021L02: Memory, Arrays

Okay, So Arrays in C Are Hunks of Memory

 int a[10]; // 40 bytes
char c[10]; // 10 bytes

 How do I access elements?
 a[2] => generate code that takes the starting address of a and

adds 2*4 to it, and the four bytes at that location are what you
want

 C: Generalize and simplify => Pointers

17

CSE333, Winter 2021L02: Memory, Arrays

Pointers
 C needs the following things
 Address computations that support arrays / array indexing

 A data type that can store the address returned by malloc(), so
that programs can dynamically allocate space

 A way for a variable to serve as a reference to another variable,
like we need when building linked lists and other linked data
structures

 The unifying concept for these things in C is the pointer

 Pointers hold memory addresses

 You can put any address you want into a pointer variable,
but you’d be crazy to do so
 Unless you’re an operating system, maybe

18

CSE333, Winter 2021L02: Memory, Arrays

Pointers Explained

 int *pInt; // “pInt” is an 8-byte variable that can
// store a memory address

 pInt = 2; // Set the address in pInt to 2 (never do this)

 *pInt = 2; // Write the four bytes at the address given
// by the 8 bytes of pInt with the value 2

 The pointer is 8 bytes

 The thing at the address it contains is presumed to be as
long as the type it was declared to point at

19

CSE333, Winter 2021L02: Memory, Arrays

The Dereference Operator, *
 On the lhs:
 *pInt = 2;

 The lhs is going to evaluate to an address to write
• ‘pInt’ evaluates to the address of the 8 bytes named pInt

• ‘*pInt’ takes the 8 bytes stored in bytes named pInt and that value
becomes the effective address

 On the rhs:
 pOther = pInt;

• The value of pInt on the rhs is the contents of the 8 bytes named pInt

 y = *pInt;
• *pInt means get an address from the 8 bytes pInt, then go to that

address and get four bytes
20

CSE333, Winter 2021L02: Memory, Arrays

Visually

 int x;

 int *pInt; // or
int* pInt;

21

x

pInt

*pInt

CSE333, Winter 2021L02: Memory, Arrays

Setting Pointers Sanely

 When you dynamically allocate something
 struct node *pNode = (struct node*)malloc(sizeof(node));

 When you want to create an alias for some existing
variable
 int x;

int *pInt = &x; // “address of” operator

22

CSE333, Winter 2021L02: Memory, Arrays

Array Names

 int array[10];
 The symbol “array” behaves like a pointer literal

• Its value is the starting address of the 40 bytes of the array

• Its value is stored by the compiler during compilation

• There is no memory allocated to store its value at run time

 You can say array[2] = 0, meaning something like
*(0x7ffe0354ce5c + 2*4) = 0

 In contrast:
 int *p; // this allocates 8 bytes named p, not an array

p[2] = 0; // a terrible mistake, as you’re writing over memory
// that holds some other variable (probably) because
// p is not initialized

23

CSE333, Winter 2021L02: Memory, Arrays

When Things Aren’t What A Java
Programmer Thinks
 C’s pointer syntax makes it easy to forget it doesn’t really have

arrays

 int x[] = {1,2,3};
int y[] = {100, 101, 102};
x = y;
printf(“%d\n”, x[0]);

 What happens?
 Compile time error

 Prints 100

 Prints some crazy number

24

CSE333, Winter 2021L02: Memory, Arrays

Second Try
 int x[] = {1,2,3};

int y[] = {100, 101, 102};
x[0] = y;
printf(“%d\n”, x[0]);

 What happens?
 Compile time error

 Prints 100

 Prints some crazy number

25

CSE333, Winter 2021L02: Memory, Arrays

Second Try
 int x[] = {1,2,3};

int y[] = {100, 101, 102};
x[0] = y;
printf(“%d\n”, x[0]);

 What happens?
 Compile time error

 Prints 100

 Prints some crazy number

26

test.c: In function ‘main’:
test.c:6:8: warning: assignment to ‘int’ from ‘int *’ makes integer from pointer without a cast [-Wint-
conversion]

6 | x[0] = y;
| ^

[attu7] ~/tmp> ./a.out
867687208

CSE333, Winter 2021L02: Memory, Arrays

Multi-dimensional Arrays

 Generic 2D format:
type name[rows][cols] = {{values},…,{values}};

 Still allocates a single, contiguous chunk of memory

 C is row-major

 What is the address computation corresponding to matrix[2][3]?

27

// a 2-row, 3-column array of doubles
double grid[2][3];

// a 3-row, 5-column array of ints
int matrix[3][5] = {

{0, 1, 2, 3, 4},
{0, 2, 4, 6, 8},
{1, 3, 5, 7, 9}

};

CSE333, Winter 2021L02: Memory, Arrays

C Parameter Passing

 All assignment copies bytes

 Parameter passing is assignment
 Assign the value of the arguments to the local variables that are

the parameters (names used in the function)

 Parameter passing is “by value”
 The argument is some expression, .e.g., x or x+y or ptr or *ptr or

intArray

 ALWAYS

28

CSE333, Winter 2021L02: Memory, Arrays

Parameter Passing Examples

 int x = 12;
int *pInt = &x;
int intArray[] = {0, 1, -2, 3, -4, 5, -6, 7, -8, 9};

29

Function prototype Call Value of y in Function

int sub(int y); sub(x);
sub(pInt);
sub(intArray);

12
<the address of caller’s x> as an int
<the address of caller’s intArray[0]>

int sub(int *y) sub(x);
sub(pInt);

sub(intArray);

*y is the four byte int at address 12
*y is the caller’s x

y[3] is a runtime bug!
*y is the caller’s intArray[0]

y[0]…y[n] are the caller’s intArray

int sub(int y[]) sub(x) y[0] is the four byte int at address 12
y[0] is the caller’s x; y[1] is an error
y[0]…y[n] are the caller’s intArray

CSE333, Winter 2021L02: Memory, Arrays

Arrays as Parameters

 You cannot pass an array as a parameter

 You can pass the starting address of the array

 The function’s parameter type determines the size of the
element(s) the parameter points at

 If you want to create a function “that operates on an
array” you have to supply
 The array’s starting address

 The array’s length

 void zeroArray(int *array, int size); // or
void zeroArray(int array[], int size);

30

CSE333, Winter 2021L02: Memory, Arrays

Warning
 In Java an array name basically names the elements of the

array

 In C, the array name is an address, not an array
 It’s the [] operator (as in intArray[3] or pInt[n]) that “makes it an

array”
• Even if it isn’t…

 Except that int exampleArray[100]; allocates space for 100
elements and no space for the symbol “exampleArray”

 And int *pIntArray allocates 8 bytes to hold a pointer, but
no space for the array the programmer presumably
intends pIntArray will point at

31

CSE333, Winter 2021L02: Memory, Arrays

Another Use of Pointers

 A method can return only one value

 What if you want to return more than one value?
 For example, you want to return a success/failure indicator AND

some result computed when successful

 You could return a struct that contained fields for both
 That’s not typically done

 What is typical is to
 Return success/failure as the return value

 Return the other value(s) through an output parameter(s)

 Why does it matter that the success/indicator is the actual
return value?

32

CSE333, Winter 2021L02: Memory, Arrays

Output Parameters
 int max(int val_array[], int size, int *result) {

 if (val_array == NULL) return 1;

 if (result != NULL) {

 *result = val_array[0];

 for (int i=1; i<size; i++)

 if (val_array[i] > *result) *result = val_array[i];

 }

 return 0;

 }

 int main() {

 int vals[] = {1, -2, 3, 17, 10, 29, -4};

 int result;

 if (!max(vals, sizeof(vals)/sizeof(int), &result))

 printf("%d\n", result);

 else printf("Call to max() failed\n");

 return 0;

 }

33

