
CSE333, Winter 2021L02: Memory, Arrays

Values, Operators, Variables
CSE 333 Winter 2021
Values, Operators, Variables
CSE 333 Winter 2021

Instructor: John Zahorjan

Teaching Assistants:

Matthew Arnold Nonthakit Chaiwong Jacob Cohen

Elizabeth Haker Henry Hung Chase Lee

Leo Liao Tim Mandzyuk Benjamin Shmidt

Guramrit Singh

CSE333, Winter 2021L02: Memory, Arrays

Preliminaries
 C is beautiful

 What does that mean?
 A very few, pretty simple concepts are all it has/needs

 It uses those simple concepts to enable “natural ways of writing things” – ways
programmers were already accustomed to

 Aside: if simple is beautiful than complicated must be un-beautiful
 Special cases are complicated – avoid them

 If…then…else is complicated – avoid them
• Especially nested ones

 A method with multiple return statements is complicated

 Scattering declarations throughout your code is complicated – put them at the
top

2

CSE333, Winter 2021L02: Memory, Arrays

Preliminaries
 Complex vs. Non-Complex

 The more you have to know about the rest of the code and the dynamic state of the
execution to understand that some statement is correct, the worse the code

 C provides mechanisms

 It relies on conventions
 A trivial example: “every” main() checks the number of arguments and calls a function

whose name is usage() if something looks wrong

 It’s not part of the language; not built into compilers; not enforced in any way

 When you read someone else’s code and you see a call to usage(), you know what it’s
doing

 C mechanisms don’t make it impossible to write correct code

 Most of the time, if you follow the conventions, the code looks pretty
“normal”

3

CSE333, Winter 2021L02: Memory, Arrays

Expressions
 An expression is something that can be evaluated to

produce a value
 6 + 10 / 3

• 10 / 3 evaluates to 3 => 6 + 3 => 9

 A literal is a simple value, known at coding time
 6

 ‘c’

 How did I decide that 10 / 3 evaluated to 3?
 I did integer division. Why?

 It isn’t the symbol ‘/’ telling me to do integer division, it’s the type
of the operands to the ‘/’ operation

4

CSE333, Winter 2021L02: Memory, Arrays

Operators / Functions

 An expression can be just a literal

 Expressions often involve operators/functions:
 6 + 10 / 3

 6 + gcd(98, 32)

 Functions and operators are very similar, even if the
syntax looks different

 Both take inputs of certain type(s) and “return” a value of
a certain type

 In C, the type returned can be determined at compile time

 This is all that type checking means in C…

5

CSE333, Winter 2021L02: Memory, Arrays

Beautiful or Bizarre?
Assignment Statements

 C doesn’t have assignment statements
 It has an assignment operator

 It’s very low precedence

 x = y + 2;
 Normal; looks like “an assignment statement”

 x = y = 2 + z;
 Totally legal

 2+z;
 Totally legal (but the compiler might helpfully issue a warning)

6

CSE333, Winter 2021L02: Memory, Arrays

What Does ‘=‘ Mean in C?

 Assignment is about copying the contents of memory
from someplace to someplace else
 (Technical detail: sometimes “memory” is a register)

 Let’s consider the general form: lhs = expression;

 The lhs has to be “an lvalue” – something that can be
assigned to
 X // a simple variable

 Array[4] // this means what you think, but is a pointer dereference (later…)

 The lhs has a type, and the type has a size
 That’s how many bytes are going to be copied

7

CSE333, Winter 2021L02: Memory, Arrays

Type Conversion
 The expression on the right-hand-side (rhs) is evaluated
 The result is a value of some type

 That type has a size

 That type may not be the same as the type of the lhs

 IF the lhs and the rhs have the same type, then they’re of
the same size and C generates code to copy bytes

 If the lhs and rhs are of different types, there are two
possibilities
1. C converts the type of the rhs quantity to the type of the lhs

2. You get a compile time error

 C really doesn’t like to issue compile time errors…

8

CSE333, Winter 2021L02: Memory, Arrays

Examples

 int x = 20;
int y = x * 2;
 4 bytes are allocated on stack for x, and 4 for y

 Code is generated to move the small integer 20 to the 4 bytes
named x

 Code is generated to fetch the four bytes named x into a register,
shift the register left one bit (multiply by 2), and then copy the 4
bytes in the register to the four bytes named y

9

CSE333, Winter 2021L02: Memory, Arrays

Examples

 int x = 20;
float y = x * 2;
 What happens with x is as before

 C understands that simply copying the bits that result from x*2
into y wouldn’t be a good idea, even though y is 4 bytes

 So, C does an implicit cast, generating code that converts the
integer result of x*2 to its float representation
• And then copies the four bytes of that float to y

 int x = ‘0’;
 C generates code that extends the 8 bits representing ‘0’ to 32

bits, then moves them into the 4 bytes named x

10

CSE333, Winter 2021L02: Memory, Arrays

Assignment and Implicit Conversions

 The rules about implicit conversion are complicated

 There are lots of them

 Mostly, they “just work”…
 You get what you expect, mostly

 I’m not going to try to go over them in class

 It is hard to generate an example of an assignment to an
int variable that causes a compile time error

 It’s easy to generate examples that don’t do what you
probably think, though

11

CSE333, Winter 2021L02: Memory, Arrays

Summary So Far

 lhs = rhs
 The lhs names some memory where values will be written

 The rhs identifies a value

 x = x
 The ‘x’ on the lhs means the address that x represents

 The ‘x’ on the rhs means the last value assigned to x

 This is ALWAYS what assignment means in C, even when it
may not seem like it
 And even when you want it to mean something different

 (Aside: passing an argument to a function is assignment)

12

CSE333, Winter 2021L02: Memory, Arrays

Array in C

 Originally, C didn’t have arrays
 But it has always had syntax that looked just like arrays

• E.g., x[4] = x[5] + 1;

 These days the compiler knows something about arrays
 E.g., you probably used sizeof() on a thing we’d call an array in

ex01

13

CSE333, Winter 2021L02: Memory, Arrays

Arrays in General
 An array is a data structure whose keys are consecutive

non-negative integers and that can perform lookup in
constant time

 The implementation requires as many consecutive bytes
in memory as the total size of the array
 int example[100]; // requires 400 consecutive bytes

 The consecutive bytes allow constant time lookup
 array[n] is located at

• The starting address of the elements of array plus

• n * the number of bytes required for each element

 Example: array[10] is at starting address of array + 40 if array
holds ints

14

CSE333, Winter 2021L02: Memory, Arrays

C and Arrays
 C has something that works just like an array if you use it

without error

 If your code has errors, though, what it does is undefined

 If you write array[n] = 0, C will generate code that assigns
0 to the four bytes in memory at address “starting address
of array + n*4” (assuming array hold ints)

 What if n == -3?
 “undefined”

 In practice, you’ll be operating on the bytes at offset -12 from the
start of the array

 Those bytes are likely some other variable in your program

15

CSE333, Winter 2021L02: Memory, Arrays

C and Arrays

 Sure, C could check that n was in bounds
 It can’t check at compile time, though

 It would have to generate code to check during execution

 But that would slow down every C program, including those that
didn’t contain any array bound errors

 So… you write code yourself to check array bounds if
you’re worried your code isn’t right
 Don’t make every program pay the penalty

 There are, of course, libraries that will provide an array
bounds checked array
 And you can just write code yourself, maybe more simply

16

CSE333, Winter 2021L02: Memory, Arrays

Okay, So Arrays in C Are Hunks of Memory

 int a[10]; // 40 bytes
char c[10]; // 10 bytes

 How do I access elements?
 a[2] => generate code that takes the starting address of a and

adds 2*4 to it, and the four bytes at that location are what you
want

 C: Generalize and simplify => Pointers

17

CSE333, Winter 2021L02: Memory, Arrays

Pointers
 C needs the following things
 Address computations that support arrays / array indexing

 A data type that can store the address returned by malloc(), so
that programs can dynamically allocate space

 A way for a variable to serve as a reference to another variable,
like we need when building linked lists and other linked data
structures

 The unifying concept for these things in C is the pointer

 Pointers hold memory addresses

 You can put any address you want into a pointer variable,
but you’d be crazy to do so
 Unless you’re an operating system, maybe

18

CSE333, Winter 2021L02: Memory, Arrays

Pointers Explained

 int *pInt; // “pInt” is an 8-byte variable that can
// store a memory address

 pInt = 2; // Set the address in pInt to 2 (never do this)

 *pInt = 2; // Write the four bytes at the address given
// by the 8 bytes of pInt with the value 2

 The pointer is 8 bytes

 The thing at the address it contains is presumed to be as
long as the type it was declared to point at

19

CSE333, Winter 2021L02: Memory, Arrays

The Dereference Operator, *
 On the lhs:
 *pInt = 2;

 The lhs is going to evaluate to an address to write
• ‘pInt’ evaluates to the address of the 8 bytes named pInt

• ‘*pInt’ takes the 8 bytes stored in bytes named pInt and that value
becomes the effective address

 On the rhs:
 pOther = pInt;

• The value of pInt on the rhs is the contents of the 8 bytes named pInt

 y = *pInt;
• *pInt means get an address from the 8 bytes pInt, then go to that

address and get four bytes
20

CSE333, Winter 2021L02: Memory, Arrays

Visually

 int x;

 int *pInt; // or
int* pInt;

21

x

pInt

*pInt

CSE333, Winter 2021L02: Memory, Arrays

Setting Pointers Sanely

 When you dynamically allocate something
 struct node *pNode = (struct node*)malloc(sizeof(node));

 When you want to create an alias for some existing
variable
 int x;

int *pInt = &x; // “address of” operator

22

CSE333, Winter 2021L02: Memory, Arrays

Array Names

 int array[10];
 The symbol “array” behaves like a pointer literal

• Its value is the starting address of the 40 bytes of the array

• Its value is stored by the compiler during compilation

• There is no memory allocated to store its value at run time

 You can say array[2] = 0, meaning something like
*(0x7ffe0354ce5c + 2*4) = 0

 In contrast:
 int *p; // this allocates 8 bytes named p, not an array

p[2] = 0; // a terrible mistake, as you’re writing over memory
// that holds some other variable (probably) because
// p is not initialized

23

CSE333, Winter 2021L02: Memory, Arrays

When Things Aren’t What A Java
Programmer Thinks
 C’s pointer syntax makes it easy to forget it doesn’t really have

arrays

 int x[] = {1,2,3};
int y[] = {100, 101, 102};
x = y;
printf(“%d\n”, x[0]);

 What happens?
 Compile time error

 Prints 100

 Prints some crazy number

24

CSE333, Winter 2021L02: Memory, Arrays

Second Try
 int x[] = {1,2,3};

int y[] = {100, 101, 102};
x[0] = y;
printf(“%d\n”, x[0]);

 What happens?
 Compile time error

 Prints 100

 Prints some crazy number

25

CSE333, Winter 2021L02: Memory, Arrays

Second Try
 int x[] = {1,2,3};

int y[] = {100, 101, 102};
x[0] = y;
printf(“%d\n”, x[0]);

 What happens?
 Compile time error

 Prints 100

 Prints some crazy number

26

test.c: In function ‘main’:
test.c:6:8: warning: assignment to ‘int’ from ‘int *’ makes integer from pointer without a cast [-Wint-
conversion]

6 | x[0] = y;
| ^

[attu7] ~/tmp> ./a.out
867687208

CSE333, Winter 2021L02: Memory, Arrays

Multi-dimensional Arrays

 Generic 2D format:
type name[rows][cols] = {{values},…,{values}};

 Still allocates a single, contiguous chunk of memory

 C is row-major

 What is the address computation corresponding to matrix[2][3]?

27

// a 2-row, 3-column array of doubles
double grid[2][3];

// a 3-row, 5-column array of ints
int matrix[3][5] = {

{0, 1, 2, 3, 4},
{0, 2, 4, 6, 8},
{1, 3, 5, 7, 9}

};

CSE333, Winter 2021L02: Memory, Arrays

C Parameter Passing

 All assignment copies bytes

 Parameter passing is assignment
 Assign the value of the arguments to the local variables that are

the parameters (names used in the function)

 Parameter passing is “by value”
 The argument is some expression, .e.g., x or x+y or ptr or *ptr or

intArray

 ALWAYS

28

CSE333, Winter 2021L02: Memory, Arrays

Parameter Passing Examples

 int x = 12;
int *pInt = &x;
int intArray[] = {0, 1, -2, 3, -4, 5, -6, 7, -8, 9};

29

Function prototype Call Value of y in Function

int sub(int y); sub(x);
sub(pInt);
sub(intArray);

12
<the address of caller’s x> as an int
<the address of caller’s intArray[0]>

int sub(int *y) sub(x);
sub(pInt);

sub(intArray);

*y is the four byte int at address 12
*y is the caller’s x

y[3] is a runtime bug!
*y is the caller’s intArray[0]

y[0]…y[n] are the caller’s intArray

int sub(int y[]) sub(x) y[0] is the four byte int at address 12
y[0] is the caller’s x; y[1] is an error
y[0]…y[n] are the caller’s intArray

CSE333, Winter 2021L02: Memory, Arrays

Arrays as Parameters

 You cannot pass an array as a parameter

 You can pass the starting address of the array

 The function’s parameter type determines the size of the
element(s) the parameter points at

 If you want to create a function “that operates on an
array” you have to supply
 The array’s starting address

 The array’s length

 void zeroArray(int *array, int size); // or
void zeroArray(int array[], int size);

30

CSE333, Winter 2021L02: Memory, Arrays

Warning
 In Java an array name basically names the elements of the

array

 In C, the array name is an address, not an array
 It’s the [] operator (as in intArray[3] or pInt[n]) that “makes it an

array”
• Even if it isn’t…

 Except that int exampleArray[100]; allocates space for 100
elements and no space for the symbol “exampleArray”

 And int *pIntArray allocates 8 bytes to hold a pointer, but
no space for the array the programmer presumably
intends pIntArray will point at

31

CSE333, Winter 2021L02: Memory, Arrays

Another Use of Pointers

 A method can return only one value

 What if you want to return more than one value?
 For example, you want to return a success/failure indicator AND

some result computed when successful

 You could return a struct that contained fields for both
 That’s not typically done

 What is typical is to
 Return success/failure as the return value

 Return the other value(s) through an output parameter(s)

 Why does it matter that the success/indicator is the actual
return value?

32

CSE333, Winter 2021L02: Memory, Arrays

Output Parameters
 int max(int val_array[], int size, int *result) {

 if (val_array == NULL) return 1;

 if (result != NULL) {

 *result = val_array[0];

 for (int i=1; i<size; i++)

 if (val_array[i] > *result) *result = val_array[i];

 }

 return 0;

 }

 int main() {

 int vals[] = {1, -2, 3, 17, 10, 29, -4};

 int result;

 if (!max(vals, sizeof(vals)/sizeof(int), &result))

 printf("%d\n", result);

 else printf("Call to max() failed\n");

 return 0;

 }

33

