

pollev.com/cse333justin

About how long did Exercise 11 take you?

```
A. [0, 2) hours
```

- B. [2, 4) hours
- C. [4, 6) hours
- D. [6, 8) hours
- E. 8+ Hours
- F. I didn't submit /
 I prefer not to say

Concurrency: Threads CSE 333 Spring 2021

Instructor: Justin Hsia, Travis McGaha

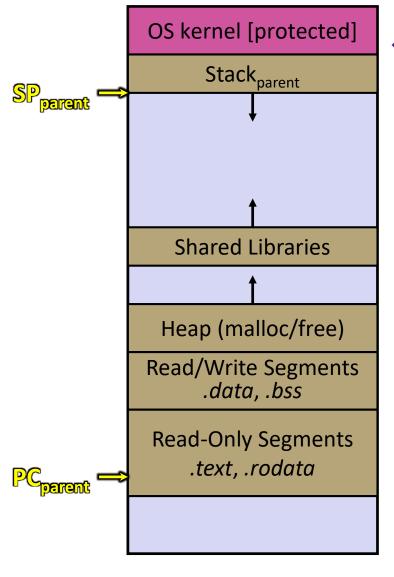
Teaching Assistants:

Atharva Deodhar Callum Walker Cosmo Wang

Dylan Hartono Elizabeth Haker Eric Marnadi

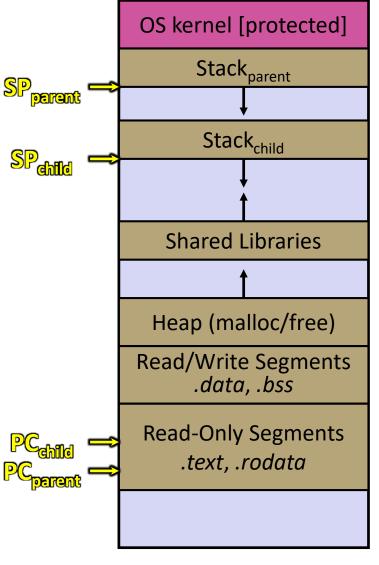
Kyrie Dowling Leo Liao Markus Schiffer

Neha Nagvekar Nonthakit Chaiwong Ramya Challa


Administrivia

- Exercise 12 released today, due Wednesday (6/2)
 - Concurrency via pthreads
- hw4 due next Thursday (6/3)
 - Partner submission deadline is tonight @ 11:59 pm
 - Submissions accepted until Sunday (6/6)
- Please fill out the course evaluations for lecture and your section next week!
 - Single lecture eval for Justin & Travis
- Final will be open from Sunday, June 6 through Wednesday, June 9 on Gradescope
 - Similar to Midterm; details on course website

Threads


- Threads are like lightweight processes
 - They execute concurrently like processes
 - Multiple threads can run simultaneously on multiple CPUs/cores
 - Unlike processes, threads cohabitate the same address space
 - Threads within a process see the same heap and globals and can communicate with each other through variables and memory
 - But, they can interfere with each other need synchronization for shared resources
 - Each thread has its own stack

Single-Threaded Address Spaces

- Before creating a thread
 - One thread of execution running in the address space
 - One PC, stack, SP
 - That main thread invokes a function to create a new thread
 - Typically pthread create()

Multi-threaded Address Spaces

- After creating a thread
 - Two threads of execution running in the address space
 - Original thread (parent) and new thread (child)
 - New stack created for child thread
 - Child thread has its own values of the PC and SP
 - Both threads share the other segments (code, heap, globals)
 - They can cooperatively modify shared data

POSIX Threads (pthreads)

- The POSIX APIs for dealing with threads
 - Declared in pthread.h
 - Not part of the C/C++ language (cf., Java)
 - To enable support for multithreading, must include -pthread flag when compiling and linking with gcc command
 - qcc -q -Wall -std=c11 -pthread -o main main.c

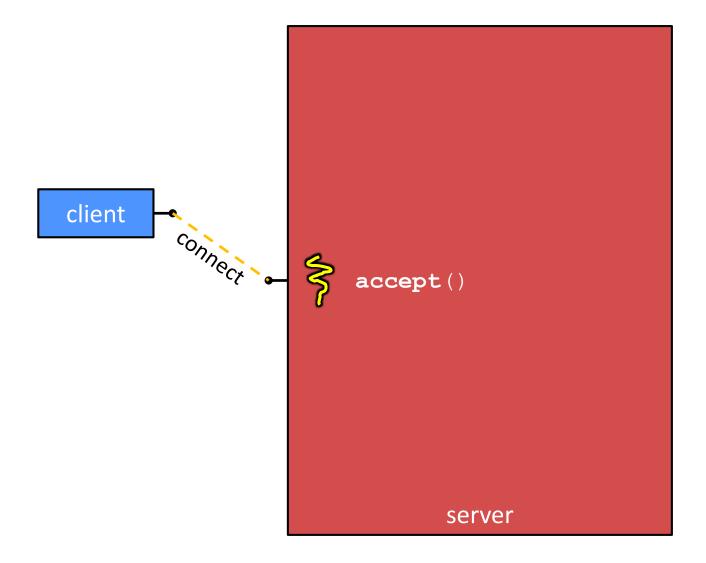
Creating and Terminating Threads

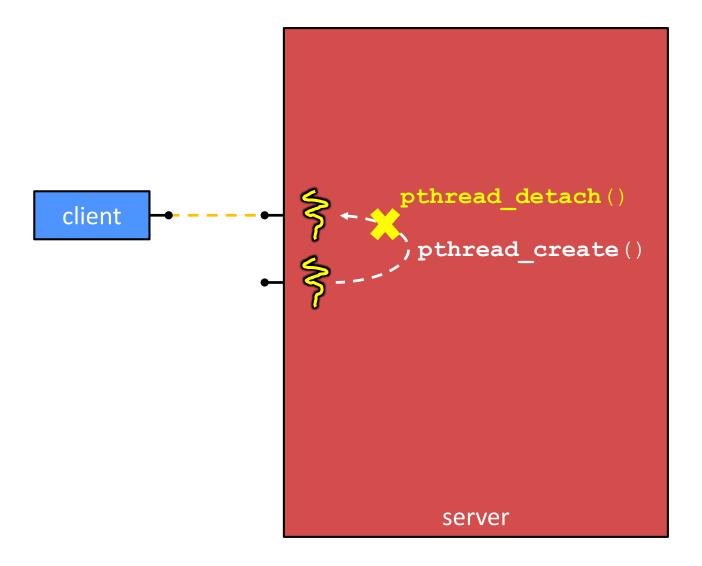
```
int pthread_create(
    pthread_t* thread,
    const pthread_attr_t* attr,
    void* (*start_routine)(void*),
    void* arg);
```

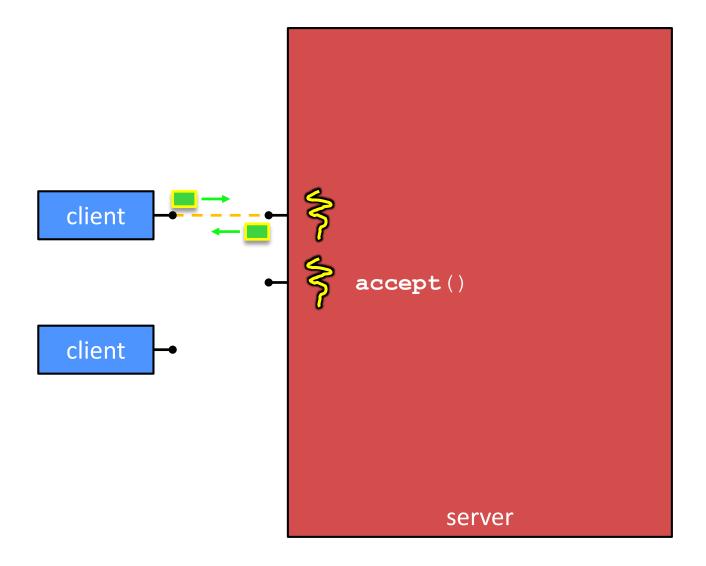
- Creates a new thread into *thread, with attributes *attr
 (NULL means default attributes)
- Returns 0 on success and an error number on error (can check against error constants)
- The new thread runs start routine (arg)

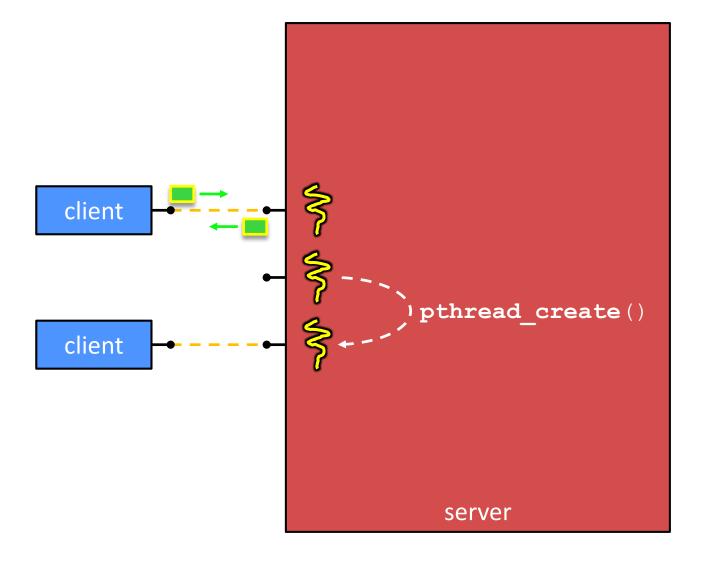
```
void pthread_exit(void* retval);
```

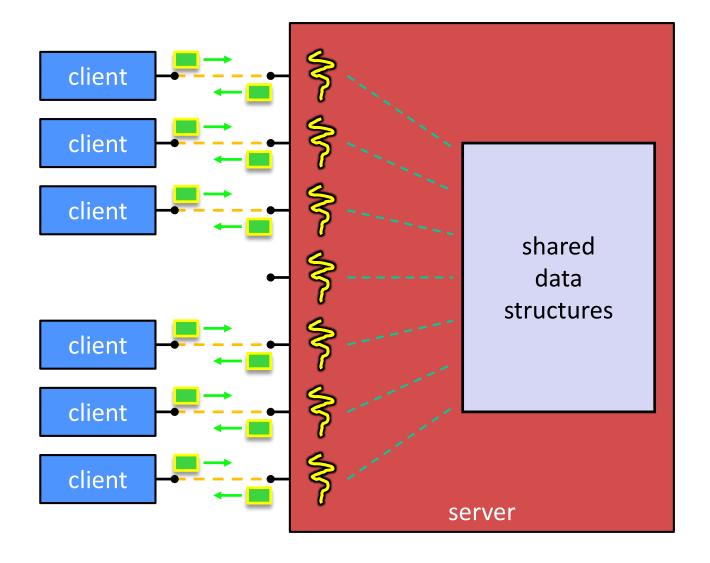
- Equivalent of exit (retval); for a thread instead of a process
- The thread will automatically exit once it returns from start routine()


What To Do After Forking Threads?


- - Waits for the thread specified by thread to terminate
 - The thread equivalent of waitpid()
 - The exit status of the terminated thread is placed in **retval


- int pthread_detach(pthread_t thread);
 - Mark thread specified by thread as detached it will clean up its resources as soon as it terminates


Concurrent Server with Threads


- A single process handles all of the connections, but a parent thread dispatches (creates) a new thread to handle each connection
 - The child thread handles the new connection and then exits when the connection terminates
- See searchserver_threads/ for code if curious

Thread Examples

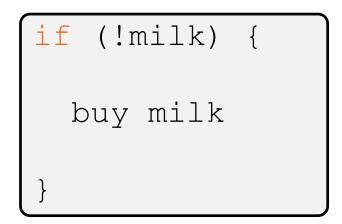
- * See cthreads.c
 - How do you properly handle memory management?
 - Who allocates and deallocates memory?
 - How long do you want memory to stick around?
- * See pthreads.cc
 - More instructions per thread = higher likelihood of interleaving
- * See searchserver threads/searchserver.cc
 - When calling pthread_create(), start_routine points to a function that takes only one argument (a void*)
 - To pass complex arguments into the thread, create a struct to bundle the necessary data

Why Concurrent Threads?

Advantages:

- Almost as simple to code as sequential
 - In fact, most of the code is identical! (but a bit more complicated to dispatch a thread)
- Concurrent execution with good CPU and network utilization
 - Some overhead, but less than processes
- Shared-memory communication is possible

Disadvantages:


- Synchronization is complicated
- Shared fate within a process
 - One "rogue" thread can hurt you badly

Data Races

- Two memory accesses form a data race if different threads access the same location, and at least one is a write, and they occur one after another
 - Means that the result of a program can vary depending on chance (which thread ran first?)

Data Race Example

- If your fridge has no milk, then go out and buy some more
 - What could go wrong?

If you live alone:

If you live with a roommate:

pollev.com/cse333justin

Does leaving a note on the fridge fix our milk data race problem?

- A. Yes, problem fixed
- B. No, could end up with no milk
- C. No, could still buy multiple milk
- D. We're lost...

```
if (!note) {
  if (!milk) {
    leave note
    buy milk
    remove note
  }
}
```

Threads and Data Races

- Data races might interfere in painful, non-obvious ways, depending on the specifics of the data structure
- <u>Example</u>: two threads try to read from and write to the same shared memory location
 - Could get "correct" answer
 - Could accidentally read old or intermediate (i.e., garbage) value
 - One thread's work could get "lost"
- Example: two threads try to push an item onto the head of the linked list at the same time
 - Could get "correct" answer
 - Could get different ordering of items
 - Could break the data structure! \$

Synchronization

- Synchronization is the act of preventing two (or more) concurrently running threads from interfering with each other when operating on shared data
 - Need some mechanism to coordinate the threads
 - "Let me go first, then you can go"
 - Many different coordination mechanisms have been invented (see CSE 451)
- Goals of synchronization:
 - Liveness ability to execute in a timely manner (informally, "something good happens")
 - Safety avoid unintended interactions with shared data structures (informally, "nothing bad happens")

Lock Synchronization

- Use a "Lock" to grant access to a critical section so that only one thread can operate there at a time
 - Executed in an uninterruptible (i.e., atomic) manner
- Lock Acquire
 - Wait until the lock is free, then take it

- Lock Release
 - Release the lock
 - If other threads are waiting, wake exactly one up to pass lock to

Pseudocode:

```
// non-critical code
lock.acquire(); loop/idle
lock.acquire(); if locked
// critical section
lock.release();
// non-critical code
```

Milk Example – What is the Critical Section?

- What if we use a lock on the refrigerator?
 - Probably overkill what if roommate wanted to get eggs?
- For performance reasons, only put what is necessary in the critical section
 - Only lock the milk
 - But lock all steps that must run uninterrupted (i.e., must run as an atomic unit)

```
fridge.lock()
if (!milk) {
  buy milk
}
fridge.unlock()
```



```
milk_lock.lock()
if (!milk) {
  buy milk
}
milk_lock.unlock()
```

pthreads and Locks

- Another term for a lock is a mutex ("mutual exclusion")
 - pthread.h defines datatype pthread_mutex_t

Initializes a mutex with specified attributes

- Acquire the lock blocks if already locked
- int pthread_mutex_unlock(pthread_mutex_t* mutex);
 - Releases the lock
- - "Uninitializes" a mutex clean up when done

pthread Mutex Examples

- See total.cc
 - Data race between threads
- * See total_locking.cc
 - Adding a mutex fixes our data race
- How does this compare to sequential code?
 - Likely slower only 1 thread can increment at a time, but have to deal with checking the lock and switching between threads
 - One possible fix: each thread increments a local variable and then adds its value (once!) to the shared variable at the end

Your Turn! (pthread mutex)

- * Rewrite thread_main from total_locking.cc:
 - It need to be passed an int* with the address of sum_total and an int with the number of times to loop (in that order)
 - Increment a local sum variable NUM times, then add it to sum_total
 - Handle synchronization properly!

C++11 Threads

- C++11 added threads and concurrency to its libraries
 - <thread> thread objects
 - <mutex> locks to handle critical sections
 - <condition_variable> used to block objects until notified to resume
 - <atomic> indivisible, atomic operations
 - <future> asynchronous access to data
 - These might be built on top of <pthread.h>, but also might not be
- Definitely use in C++11 code if local conventions allow, but pthreads will be around for a long, long time
 - Use pthreads in current exercise