
CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

Buffering, POSIX I/O, System Calls
CSE 333 Spring 2021
Buffering, POSIX I/O, System Calls
CSE 333 Spring 2021

Instructor: Justin Hsia, Travis McGaha

Teaching Assistants:
Arthava Deodhar Callum Walker Cosmo Wang
Dylan Hartono Elizabeth Haker Kyrie Dowling
Leo Liao Markus Schiffer Neha Nagvekar
Nonthakit Chaiwong Ramya Challa

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

2

pollev.com/cse333travis

About how long did Exercise 3 take you?

A. [0, 2) hours
B. [2, 4) hours
C. [4, 6) hours
D. [6, 8) hours
E. 8+ Hours
F. I didn’t submit / I prefer not to say

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

Administrivia

 Exercise 4 posted today, due Monday (4/19)
 Given a full week since it is totally new, and HW1 is due

 Homework 1 due Thursday night (4/15)
 Clean up “to do” comments, but leave “STEP #” markers
 Graded not just on correctness, also code quality.
 OH Thursday may go late. Check the Ed discussion board for more
 Late days: don’t tag hw1-final until you are really ready

• Please use them if you need to!

 Homework 2
 Starting with HW 2, projects will be done in partners

• More info to be posted on Ed later today
3

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

Lecture Outline

 C Stream Buffering
 POSIX Lower-Level I/O
 System Calls

4

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

Buffering

 By default, stdio uses buffering for streams:

 Data written by fwrite() is copied into a buffer allocated by
stdio inside your process’ address space

 As some point, the buffer will be “drained” into the destination:
• When you explicitly call fflush() on the stream
• When the buffer size is exceeded (often 1024 or 4096 bytes)
• For stdout to console, when a newline is written (“line buffered”) or

when some other function tries to read from the console
• When you call fclose() on the stream
• When your process exits gracefully (exit() or return from
main())

5

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

Buffering Example

6

int main(int argc, char** argv) {
FILE* fout = fopen("test.txt", "wb");

// write "hi" one char at a time
if (fwrite("h", sizeof(char), 1, fout) < 1) {

perror("fwrite failed");
fclose(fout);
return EXIT_FAILURE;

}

if (fwrite("i", sizeof(char), 1, fout) < 1) {
perror("fwrite failed");
fclose(fout);
return EXIT_FAILURE;

}

fclose(fout);
return EXIT_SUCCESS;

}

C stdio buffer

test.txt (disk)

……h i

buffered_hi.c

h i

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

……

No Buffering Example

7

int main(int argc, char** argv) {
FILE* fout = fopen("test.txt", "wb");
setbuf(fout, NULL); // turn off buffering

// write "hi" one char at a time
if (fwrite("h", sizeof(char), 1, fout) < 1) {

perror("fwrite failed");
fclose(fout);
return EXIT_FAILURE;

}

if (fwrite("i", sizeof(char), 1, fout) < 1) {
perror("fwrite failed");
fclose(fout);
return EXIT_FAILURE;

}

fclose(fout);
return EXIT_SUCCESS;

}

C stdio buffer

test.txt (disk)
h i

unbuffered_hi.c

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

Why Buffer?

 Performance – avoid disk accesses
 Group many small writes

into a single larger write

 Disk Latency = 😱😱😱
(Jeff Dean from LADIS ’09)

 Convenience – nicer API
 We’ll compare C’s fread() with POSIX’s read()

8

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

Why NOT Buffer?

 Reliability – the buffer needs to be flushed
 Loss of computer power = loss of data
 “Completion” of a write (i.e. return from fwrite()) does not

mean the data has actually been written
• What if you signal another process to read the file you just wrote to?

 Performance – buffering takes time
 Copying data into the stdio buffer consumes CPU cycles and

memory bandwidth
 Can potentially slow down high-performance applications, like a

web server or database (“zero-copy”)

 When is buffering faster? Slower?
9

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

Lecture Outline

 C Stream Buffering
 POSIX Lower-Level I/O
 System Calls

10

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

Remember This Picture?

11

C application

C standard
library (glibc)

C++ STL/boost/
standard library

C++ application Java application

JRE

CPU memory storage network
GPU clock audio radio peripherals

HW/SW interface
(x86 + devices)

OS / app interface
(system calls)

operating system

hardware

A brief
diversion...

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

We Need To Go Deeper…

 So far we’ve seen the C standard library to access files
 Use a provided FILE* stream abstraction
 fopen(), fread(), fwrite(), fclose(), fseek()

 These are convenient and portable
 They are buffered*
 They are implemented using lower-level OS calls

12

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

From C to POSIX

 Most UNIX-en support a common set of lower-level file
access APIs: POSIX – Portable Operating System Interface
 open(), read(), write(), close(), lseek()

• Similar in spirit to their f*() counterparts from the C std lib
• Lower-level and unbuffered compared to their counterparts
• Also less convenient

 C stdlib doesn’t provide everything POSIX does
• You will have to use these to read file system directories and for

network I/O, so we might as well learn them now

13

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

open()/close()

 To open a file:
 Pass in the filename and access mode

• Similar to fopen()

 Get back a “file descriptor”
• Similar to FILE* from fopen(), but is just an int
• Defaults: 0 is stdin, 1 is stdout, 2 is stderr
– -1 indicates error

14

#include <fcntl.h> // for open()
#include <unistd.h> // for close()

...
int fd = open("foo.txt", O_RDONLY);
if (fd == -1) {

perror("open failed");
exit(EXIT_FAILURE);

}
...
close(fd);

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

Reading from a File
 ssize_t read(int fd, void* buf, size_t count);

 Returns the number of bytes read
• Might be fewer bytes than you requested (!!!)
• Returns 0 if you’re already at the end-of-file
• Returns -1 on error (and sets errno)
• Advances forward in the file by number

of bytes read

 There are some surprising error modes (check errno)
• EBADF: bad file descriptor
• EFAULT: output buffer is not a valid address
• EINTR: read was interrupted, please try again (ARGH!!!! 😤😠)
• And many others…

15

ssize_t read(int fd, void* buf, size_t count);

errno
==

EINTR

Return Value

0-1 > 0

read()

other
errno

==
count

<
count

You’re
done!

Keep
reading

Error msg,
exit

Try
again!

eof

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

One way to read() bytes

 Let’s say we want to read ‘n’ bytes. Which is the correct
completion of the blank below?

16

char* buf = ...; // buffer of size n
int bytes_left = n;
int result; // result of read()

while (bytes_left > 0) {
result = read(fd, ______, bytes_left);
if (result == -1) {

if (errno != EINTR) {
// a real error happened,
// so return an error result

}
// EINTR happened,
// so do nothing and try again
continue;

}
bytes_left -= result;

}

A. buf

B. buf + bytes_left

C. buf + bytes_left - n

D. buf + n - bytes_left

E. We’re lost…

pollev.com/cse333travis

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

One method to read() bytes

17

int fd = open(filename, O_RDONLY);
char* buf = ...; // buffer of appropriate size
int bytes_left = n;
int result;

while (bytes_left > 0) {
result = read(fd, buf + (n - bytes_left), bytes_left);
if (result == -1) {

if (errno != EINTR) {
// a real error happened, so return an error result

}
// EINTR happened, so do nothing and try again
continue;

} else if (result == 0) {
// EOF reached, so stop reading
break;

}
bytes_left -= result;

}

close(fd);

readN.c

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

Other Low-Level Functions

 Read man pages to learn about:
 write() – write data

• #include <unistd.h>

 fsync() – flush data to the underlying device
• #include <unistd.h>

 opendir(), readdir(), closedir() – deal with directory
listings
• Make sure you read the section 3 version (e.g. man 3 opendir)
• #include <dirent.h>

 A useful shortcut sheet (from CMU):
http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

18

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

C Standard Library vs. POSIX

 C std lib implements a subset of POSIX
 e.g. POSIX provides directory manipulation that C std lib doesn’t

 C std lib implements automatic buffering
 C std lib has a nicer API

 The two are similar but C std lib builds on top of POSIX
 Choice between high-level and low-level
 Will depend on the requirements of your application

19

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

Lecture Outline

 C Stream Buffering
 POSIX Lower-Level I/O
 System Calls

20

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

What’s an OS?

 Software that:
 Directly interacts with the hardware

• OS is trusted to do so; user-level programs are not
• OS must be ported to new hardware; user-level programs are

portable

 Abstracts away messy hardware devices
• Provides high-level, convenient, portable abstractions

(e.g. files, disk blocks)

 Manages (allocates, schedules, protects) hardware resources
• Decides which programs have permission to access which files,

memory locations, pixels on the screen, etc. and when

21

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

OS: Abstraction Provider

 The OS is the “layer below”
 A module that your program can call (with system calls)
 Provides a powerful OS API – POSIX, Windows, etc.

22

a process running
your program

OS

OS
API

fil
e

sy
st

em

ne
tw

or
k

st
ac

k

vi
rt

ua
l m

em
or

y

pr
oc

es
s m

gm
t.

…
 e

tc
…

File System
• open(), read(), write(), close(), …

Network Stack
• connect(), listen(), read(), write(), ...

Virtual Memory
• brk(), shm_open(), …

Process Management
• fork(), wait(), nice(), …

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

OS: Protection System

 OS isolates process from each other
 But permits controlled sharing between them

• Through shared name spaces (e.g. file names)

 OS isolates itself from processes
 Must prevent processes from accessing the

hardware directly

 OS is allowed to access the hardware
 User-level processes run with the CPU

(processor) in unprivileged mode
 The OS runs with the CPU in privileged mode
 User-level processes invoke system calls to

safely enter the OS

23

OS
(trusted)

HW (trusted)

Pr
oc

es
s A

(u
nt

ru
st

ed
)

Pr
oc

es
s B

(u
nt

ru
st

ed
)

Pr
oc

es
s C

(u
nt

ru
st

ed
)

Pr
oc

es
s D

(t
ru

st
ed

)

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

System Call Trace (high-level view)

24

OS
(trusted)

HW (trusted)
Pr

oc
es

s A
(u

nt
ru

st
ed

)

Pr
oc

es
s

B
(u

nt
ru

st
ed

)

Pr
oc

es
s C

(u
nt

ru
st

ed
)

Pr
oc

es
s D

(t
ru

st
ed

)

A CPU (thread of
execution) is running user-

level code in Process A;
the CPU is set to

unprivileged mode.

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

OS
(trusted)

HW (trusted)
Pr

oc
es

s A
(u

nt
ru

st
ed

)

Pr
oc

es
s

B
(u

nt
ru

st
ed

)

Pr
oc

es
s C

(u
nt

ru
st

ed
)

Pr
oc

es
s D

(t
ru

st
ed

)

System Call Trace (high-level view)

25

Code in Process A invokes
a system call; the

hardware then sets the
CPU to privileged mode
and traps into the OS,

which invokes the
appropriate system call

handler.

sy
st

em
 c

al
l

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

OS
(trusted)

HW (trusted)
Pr

oc
es

s A
(u

nt
ru

st
ed

)

Pr
oc

es
s

B
(u

nt
ru

st
ed

)

Pr
oc

es
s C

(u
nt

ru
st

ed
)

Pr
oc

es
s D

(t
ru

st
ed

)

System Call Trace (high-level view)

26

Because the CPU
executing the thread
that’s in the OS is in

privileged mode, it is able
to use privileged

instructions that interact
directly with hardware

devices like disks.

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

OS
(trusted)

HW (trusted)
Pr

oc
es

s A
(u

nt
ru

st
ed

)

Pr
oc

es
s

B
(u

nt
ru

st
ed

)

Pr
oc

es
s C

(u
nt

ru
st

ed
)

Pr
oc

es
s D

(t
ru

st
ed

)

System Call Trace (high-level view)

27

sy
st

em
 c

al
l r

et
ur

n

Once the OS has finished
servicing the system call,

which might involve long waits
as it interacts with HW, it:

(1) Sets the CPU back to
unprivileged mode and

(2) Returns out of the system
call back to the user-level code

in Process A.

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

OS
(trusted)

HW (trusted)
Pr

oc
es

s A
(u

nt
ru

st
ed

)

Pr
oc

es
s

B
(u

nt
ru

st
ed

)

Pr
oc

es
s C

(u
nt

ru
st

ed
)

Pr
oc

es
s D

(t
ru

st
ed

)

System Call Trace (high-level view)

28

The process continues
executing whatever

code is next after the
system call invocation.

Useful reference:
CSPP § 8.1–8.3
(the 351 book)

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

“Library calls” on x86/Linux

 A more accurate picture:
 Consider a typical Linux process
 Its thread of execution can be in one

of several places:
• In your program’s code
• In glibc, a shared library containing

the C standard library, POSIX,
support, and more

• In the Linux architecture-independent
code

• In Linux x86-64 code

29

architecture-independent code

architecture-dependent code

glibc

C standard
library POSIX

Linux
system calls

Linux kernel

Your program

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

“Library calls” on x86/Linux: Option 1

 Some routines your program
invokes may be entirely handled
by glibc without involving the
kernel
 e.g. strcmp() from stdio.h

 There is some initial overhead when
invoking functions in dynamically
linked libraries (during loading)
• But after symbols are resolved,

invoking glibc routines is basically
as fast as a function call within your
program itself!

30

architecture-independent code

architecture-dependent code

glibc

C standard
library POSIX

Linux kernel

Your program

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

“Library calls” on x86/Linux: Option 2

 Some routines may be handled
by glibc, but they in turn
invoke Linux system calls
 e.g. POSIX wrappers around Linux
syscalls
• POSIX readdir() invokes the

underlying Linux readdir()

 e.g. C stdio functions that read
and write from files
• fopen(), fclose(), fprintf()

invoke underlying Linux open(),
close(), write(), etc.

31

architecture-independent code

architecture-dependent code

glibc

C standard
library POSIX

Linux kernel

Your program

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

“Library calls” on x86/Linux: Option 3

 Your program can choose to
directly invoke Linux system calls
as well
 Nothing is forcing you to link with
glibc and use it

 But relying on directly-invoked Linux
system calls may make your
program less portable across UNIX
varieties

32

architecture-independent code

architecture-dependent code

glibc

C standard
library POSIX

Linux kernel

Your program

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

Details on x86/Linux

 Let’s walk through how a Linux
system call actually works
 We’ll assume 32-bit x86 using the

modern SYSENTER / SYSEXIT x86
instructions
• x86-64 code is similar, though details

always change over time, so take this
as an example – not a debugging
guide

33

architecture-independent code

architecture-dependent code

glibc

C standard
library POSIX

Linux kernel

Your program

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

System Calls on x86/Linux

Remember our
process address
space picture?
 Let’s add some

details:

34

architecture-independent code

architecture-dependent code

glibc

C standard
library POSIX

CPU
Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

System Calls on x86/Linux
Process is executing your
program code

35

architecture-independent code

architecture-dependent code

glibc

C standard
library POSIX

CPU
Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

SP

IP

unpriv
Program code

(Process)

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

System Calls on x86/Linux
Process calls into a
glibc function
 e.g. fopen()
 We’ll ignore the

messy details of
loading/linking
shared libraries

36

architecture-independent code

architecture-dependent code

glibc

C standard
library POSIX

CPU
Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

unpriv

SP

IP

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

System Calls on x86/Linux
glibc begins the
process of invoking a
Linux system call
 glibc’s

fopen() likely
invokes Linux’s
open() system
call

 Puts the system call #
and arguments into
registers

 Uses the call x86
instruction to call into
the routine
__kernel_vsyscall
located in linux-
gate.so

37

architecture-independent code

architecture-dependent code

glibc

C standard
library POSIX

CPU
Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

unpriv

SP

IP

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

System Calls on x86/Linux

linux-gate.so is a
vdso
 A virtual

dynamically-linked
shared
object

 Is a kernel-provided
shared library that is
plunked into a process’
address space

 Provides the intricate
machine code needed to
trigger a system call

38

architecture-independent code

architecture-dependent code

glibc

C standard
library POSIX

CPU
Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

unpriv

SP

IP

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

System Calls on x86/Linux
linux-gate.so
eventually invokes
the SYSENTER x86
instruction
 SYSENTER is x86’s “fast

system call” instruction
• Causes the CPU to raise

its privilege level
• Traps into the Linux

kernel by changing the
SP, IP to a previously-
determined location

• Changes some
segmentation-related
registers (see CSE451)

39

architecture-independent code

architecture-dependent code

glibc

C standard
library POSIX

CPU
Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

priv

SP
IP

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

System Calls on x86/Linux
The kernel begins
executing code at
the SYSENTER
entry point
 Is in the architecture-

dependent part of Linux
 It’s job is to:

• Look up the system call
number in a system call
dispatch table

• Call into the address
stored in that table entry;
this is Linux’s system call
handler
– For open(), the

handler is named
sys_open, and is
system call #5

40

architecture-independent code

architecture-dependent code

glibc

C standard
library POSIX

CPU
Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

priv

SP
IP

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

System Calls on x86/Linux
The system call
handler executes
 What it does is

system-call specific
 It may take a long time to

execute, especially if it
has to interact with
hardware
• Linux may choose to

context switch the CPU
to a different runnable
process

41

architecture-independent code

architecture-dependent code

glibc

C standard
library POSIX

CPU
Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

priv

SP
IP

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

System Calls on x86/Linux
Eventually, the
system call handler
finishes
 Returns back to the

system call entry point
• Places the system call’s

return value in the
appropriate register

• Calls SYSEXIT to return
to the user-level code

42

architecture-independent code

architecture-dependent code

glibc

C standard
library POSIX

CPU
Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

priv

SP
IP

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

System Calls on x86/Linux
SYSEXIT transitions the
processor back to user-
mode code
 Restores the

IP, SP to
user-land values

 Sets the CPU
back to
unprivileged mode

 Changes some
segmentation-related
registers (see CSE451)

 Returns the processor
back to glibc

43

architecture-independent code

architecture-dependent code

glibc

C standard
library POSIX

CPU
Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

unpriv

SP

IP

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

System Calls on x86/Linux
glibc continues to
execute
 Might execute more

system calls
 Eventually

returns back to
your program code

44

architecture-independent code

architecture-dependent code

glibc

C standard
library POSIX

CPU
Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

SP

IP

unpriv

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

System Calls - Simplified Version

 The OS is a super complicated program “Overseer”
program for the computer.
 It is the only software that is directly trusted with Hardware

access

 If a user process wants to access an OS feature, they must
invoke a system call
 A system call involves context-switching into the OS, which has

some overhead
 The OS will handle hardware/special functionality directly, user

processes will not touch anything themselves. User process will
wait for OS to finish

 OS will eventually finish, return result to user, and context switch
back

45

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

A System Call Analogy

 The OS is a very wise and knowledgeable wizard
 It has many dangerous and powerful artifacts, but it doesn’t trust

others to use them. Will perform tasks on request.

 If a civilian wants to access a “magical” feature, they must
fill out a request to the wizard.
 It takes some time for the wizard to start processing the request,

they must ensure they do everything safely
 The wizard will handle the powerful artifacts themselves. The user

WILL NOT TOUCH ANYTHING.
 Wizard will take a second to analyze results and put away artifacts

before giving results back to the user.

46

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

strace

 A useful Linux utility that shows the sequence of system
calls that a process makes:

47

bash$ strace ls 2>&1 | less
execve("/usr/bin/ls", ["ls"], [/* 41 vars */]) = 0
brk(NULL) = 0x15aa000
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =

0x7f03bb741000
access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)
open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=126570, ...}) = 0
mmap(NULL, 126570, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f03bb722000
close(3) = 0
open("/lib64/libselinux.so.1", O_RDONLY|O_CLOEXEC) = 3
read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\300j\0\0\0\0\0\0"...,

832) = 832
fstat(3, {st_mode=S_IFREG|0755, st_size=155744, ...}) = 0
mmap(NULL, 2255216, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) =

0x7f03bb2fa000
mprotect(0x7f03bb31e000, 2093056, PROT_NONE) = 0
mmap(0x7f03bb51d000, 8192, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x23000) = 0x7f03bb51d000
... etc ...

CSE333, Spring 2021L07: Buffering, POSIX I/O, Syscalls

If You’re Curious

 Download the Linux kernel source code
 Available from http://www.kernel.org/

 man, section 2: Linux system calls
 man 2 intro

 man 2 syscalls

 man, section 3: glibc/libc library functions
 man 3 intro

 The book: The Linux Programming Interface by Michael
Kerrisk (keeper of the Linux man pages)

48

