CSE333, Spring 2021

WA UNIVERSITY of WASHINGTON

LO7: Buffering, POSIX I/O, Syscalls

Buffering, POSIX 1/0O, System Calls
CSE 333 Spring 2021

Instructor: Justin Hsia, Travis McGaha

Teaching Assistants:
Arthava Deodhar
Dylan Hartono

Leo Liao

Nonthakit Chaiwong

Callum Walker Cosmo Wang
Elizabeth Haker Kyrie Dowling
Markus Schiffer Neha Nagvekar
Ramya Challa

WA UNIVERSITY of WASHINGTON LO7: Buffering, POSIX /0, Syscalls CSE333, Spring 2021

0 PO " Eve I’YWhere pollev.com/cse333travis

About how long did Exercise 3 take you?

nmoowe

[2, 4) hours

[4, 6) hours

[6, 8) hours

8+ Hours

| didn’t submit / | prefer not to say

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX I/O, Syscalls CSE333, Spring 2021

Administrivia

+» Exercise 4 posted today, due Monday (4/19)

" Given a full week since it is totally new, and HW1 is due

+» Homework 1 due Thursday night (4/15)
" Clean up “to do” comments, but leave “STEP #” markers
" Graded not just on correctness, also code quality.

" OH Thursday may go late. Check the Ed discussion board for more
" late days: don’ttag hwl-final until you are really ready
- Please use them if you need to!

+ Homework 2

= Starting with HW 2, projects will be done in partners ©
- More info to be posted on Ed later today

WA UNIVERSITY of WASHINGTON

LO7: Buffering, POSIX I/O, Syscalls

Lecture Outline

+» C Stream Buffering
+» POSIX Lower-Level I/O
+» System Calls

CSE333, Spring 2021

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX I/O, Syscalls CSE333, Spring 2021

Buffering

+ By default, stdio uses buffering for streams:

= Data written by fwrite () is copied into a buffer allocated by
stdio inside your process’ address space

= As some point, the buffer will be “drained” into the destination:
- When you explicitly call ££1ush () on the stream

- When the buffer size is exceeded (often 1024 or 4096 bytes)

- For stdout to console, when a newline is written (“line buffered”) or
when some other function tries to read from the console

- Whenyou call fclose () on the stream

- When your process exits gracefully (exit () or return from
main())

LO7: Buffering, POSIX I/O, Syscalls

WA UNIVERSITY of WASHINGTON

Buffering Example ouffered hi.c

[int main (int argc, char** argv) {
=Py FILE* fout = fopen("test.txt", "wb");

// write "hi" one char at a time

mlp- i f (fwrite ("h", sizeof (char), 1, fout) < 1) {
perror ("fwrite failed");

fclose (fout) ;

return EXIT FAILURE;

}

) if (fwrite("i", sizeof (char), 1, fout) < 1) {
perror ("fwrite failed");

fclose (fout) ;

return EXIT FAILURE;

}

_} fclose (fout) ;
return EXIT_SUCCESS;

}

CSE333, Spring 2021

C stdio buffer

h

test.txt (disk)

h

WA UNIVERSITY of WASHINGTON

LO7: Buffering, POSIX I/O, Syscalls

No Buffering Example

unbuffered_hi.c

[int main (int argc, char** argv) {

3 FILE* fout = fopen("test.txt", "wb");

// write "hi'" one char at a time

m—plp i (fwrite("h", sizeof (char), 1, fout) <
perror ("fwrite failed");
fclose(fout) ;
return EXIT FAILURE;

}

=gy 1f (fwrite("1i", sizeof(char), 1, fout) <
perror ("fwrite failed");

fclose(fout) ;

return EXIT FAILURE;

}

=—mp fclose (fout);
return EXIT SUCCESS;

}

setbuf (fout, NULL); // turn off buffering

N\

CSE333, Spring 2021

C stdio buffer

//

/

h

test.txt (disk)

WA UNIVERSITY of WASHINGTON LO7: Buffering, POSIX /0, Syscalls

Why Buffer?

«» Performance — avoid disk accesses

" Group many small writes
into a single larger write

CSE333, Spring 2021

= Disk Latency = @ @ @ Numbers Everyone Should Know

(Jeff Dean from LADIS ’09)

L1l cache reference
Branch mispredict
L2 cache reference
Mutex lock/unlock

Main memory reference

« Convenience — nicer API

Compress 1K bytes with Zippy 3
Send 2K bytes over 1 Gbps network 20,
Read 1 MB sequentially from memory 250,
Round trip within same datacenter 500,
Disk seek 10,000
Read 1 MB sequentially from disk 20,000,
Send packet CA->Netherlands->CA 150,000,

0.5 ns

5 ns

25 ns
100 ns
000 ns
000 ns
000 ns
000 ns

, 000 ns

000 ns
000 ns

= We'll compare C's £read () with POSIX’s read ()

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX I/O, Syscalls CSE333, Spring 2021

Why NOT Buffer?

+ Reliability — the buffer needs to be flushed

" |Loss of computer power = loss of data

= “Completion” of a write (i.e. return from fwrite ()) does not
mean the data has actually been written

- What if you signal another process to read the file you just wrote to?

+» Performance — buffering takes time

" Copying data into the stdio buffer consumes CPU cycles and
memory bandwidth

L)

= Can potentially slow down high-performance applications, like a
web server or database (“zero-copy”)

+» When is buffering faster? Slower?

WA UNIVERSITY of WASHINGTON LO7: Buffering, POSIX /0, Syscalls

Lecture Outline

+ C Stream Buffering
+ POSIX Lower-Level 1/0
+» System Calls

CSE333, Spring 2021

10

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX I/O, Syscalls CSE333, Spring 2021

Remember This Picture?

A brief
diversion...

C application C++ application Java application

C standard C++ STL/boost/
library (glibc) standard library

OS / app interface
(system calls)

HW/SW interface
(x86 + devices)

hardware

CPU memory storage network
GPU clock audio radio peripherals

11

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX I/O, Syscalls CSE333, Spring 2021

We Need To Go Deeper...

+ So far we’ve seen the C standard library to access files
" Use a provided FILE* stream abstraction
" fopen (), fread (), fwrite (), fclose (), fseek ()

+» These are convenient and portable
" They are buffered*
" They are implemented using lower-level OS calls

12

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX I/O, Syscalls CSE333, Spring 2021

From C to POSIX

+» Most UNIX-en support a common set of lower-level file
access APIs: POSIX — Portable Operating System Interface
" open(), read(),write(),close(), 1seek ()
« Similar in spirit to their £* () counterparts from the C std lib
- Lower-level and unbuffered compared to their counterparts
- Also less convenient
= Cstdlib doesn’t provide everything POSIX does

« You will have to use these to read file system directories and for
network I/O, so we might as well learn them now

13

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX I/O, Syscalls CSE333, Spring 2021

open () /close ()

+~ To open a file:
" Passin the filename and access mode
- Similar to fopen ()
= Get back a “file descriptor”

 Similar to FILE* from fopen (), butisjustan int
- Defaults: Ois stdin, 1is stdout, 2 is stderr

— -1 indicates error

(#include <fcntl.h> // for open ()
#include <unistd.h> // for close()

int fd = open("foo.txt", O RDONLY) ;
if (fd == -1) {

perror ("open failed");

exit (EXIT FAILURE) ;

}

close (fd) ;

WA UNIVERSITY of WASHINGTON

Reading from a File

LO7: Buffering, POSIX I/O, Syscalls

CSE333, Spring 2021

&[ssize_t read (int fd, void* buf, size t count);]

= Returns the number of bytes read

- Might be fewer bytes than you requested (!!!)
- Returns O if you’re already at the end-of-file

« Returns -1 on error (and sets errno)

- Advances forward in the file by number
of bytes read

Try
a@aivﬂ

read ()

!

Return Value

&

| €errno

EINTR

other
errno

Error msg),
exit

" There are some surprising error modes (check errno)

- EBADFE: bad file descriptor

- BIFAULT: output bufferis not a valid address

« EINTR: read was interrupted, please try again (ARGH!!!! @)

- And many others...

eof

<
count

Keep
reading

15

WA UNIVERSITY of WASHINGTON

0 Poll Everywhere

LO7: Buffering, POSIX I/O, Syscalls

CSE333, Spring 2021

pollev.com/cse333travis

+ Let’s say we want to read ‘n’ bytes. Which is the correct

completion of the blank below?

(char* buf = ...; // buffer of size n
int bytes left = n;
int result; // result of read()

while (bytes left > 0) {
result = read(fd,
1f (result == -1) {
1f (errno != EINTR) {
// a real error happened,
// so return an error result

, bytes left);

}
// EINTR happened,

// so do nothing and try again
continue;

}
bytes left -= result;

}

A

B. buf + bytes_left
C. buf + bytes _left-n
D

buf + n - bytes_left

E. We’re lost...

16

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX I/O, Syscalls CSE333, Spring 2021

One method to read () n bytes

(int fd = open(filename, O RDONLY) ; R
char* buf = ...; // buffer of appropriate size
int bytes left = n;
int result;
while (bytes left > 0) {
result = read(fd, buf + (n - bytes left), bytes left);
1f (result == -1) {
1f (errno != EINTR) {
// a real error happened, so return an error result
}
// EINTR happened, so do nothing and try again
continue;
} else 1f (result == 0) {
// EOF reached, so stop reading
break;
}
bytes left -= result;
}
\close(fd); y

readN.c 4

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX I/O, Syscalls CSE333, Spring 2021

Other Low-Level Functions

+» Read man pages to learn about:

" write () —write data
« #include <unistd.h>
= fsync () —flush data to the underlying device
« #include <unistd.h>
" opendir (), readdir (), closedir () —deal with directory
listings
- Make sure you read the section 3 version (e.g. man 3 opendir)
« #include <dirent.h>

+ A useful shortcut sheet (from CMU):
http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

18

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX I/O, Syscalls CSE333, Spring 2021

C Standard Library vs. POSIX

» Cstd lib implements a subset of POSIX
= e.g. POSIX provides directory manipulation that C std lib doesn’t

» Cstd lib implements automatic buffering
» Cstd lib has a nicer API

+» The two are similar but C std lib builds on top of POSIX

" Choice between high-level and low-level
= Will depend on the requirements of your application

19

WA UNIVERSITY of WASHINGTON

Lecture Outline

+ C Stream Buffering

LO7: Buffering, POSIX I/O, Syscalls

+» POSIX Lower-Level I/O

+» System Calls

CSE333, Spring 2021

20

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX I/O, Syscalls CSE333, Spring 2021

What’s an OS?

« Software that:

= Directly interacts with the hardware
- OS is trusted to do so; user-level programs are not

« OS must be ported to new hardware; user-level programs are
portable

= Abstracts away messy hardware devices

- Provides high-level, convenient, portable abstractions
(e.qg. files, disk blocks)

" Manages (allocates, schedules, protects) hardware resources

- Decides which programs have permission to access which files,
memory locations, pixels on the screen, etc. and when

21

WA UNIVERSITY of WASHINGTON LO7: Buffering, POSIX /0, Syscalls CSE333, Spring 2021

OS: Abstraction Provider

« The OS is the “layer below”

= A module that your program can call (with system calls)
" Provides a powerful OS APl — POSIX, Windows, etc.

File System
* open(), read(), write(), close(), ...

Network Stack
e connect(), listen(), read(), write(), ...

Virtual Memory
* brk(), shm_open(), ...

Process Management
* fork(), wait(), nice(), ...

|
|
c!l s
ol B
Y
515
o! 2
=1 2
|C
|

virtual memory
process mgmt.

... etc ...

22

WA UNIVERSITY of WASHINGTON LO7: Buffering, POSIX /0, Syscalls CSE333, Spring 2021

OS: Protection System

+» OS isolates process from each other

= But permits controlled sharing between them
- Through shared name spaces (e.g. file names)

+ OS isolates itself from processes

= Must prevent processes from accessing the
hardware directly

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

« OSis allowed to access the hardware

= User-level processes run with the CPU ON
(processor) in unprivileged mode (trusted)
® The OS runs with the CPU in privileged mode

= User-level processes invoke system calls to
safely enter the OS

HW (trusted)

23

WA UNIVERSITY of WASHINGTON LO7: Buffering, POSIX /0, Syscalls CSE333, Spring 2021

System Call Trace (high-level view)

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

A CPU (thread of
execution) is running user-
level code in Process A;

the CPU is set to 0S
unprivileged mode. (trusted)

A

24

WA UNIVERSITY of WASHINGTON LO7: Buffering, POSIX /0, Syscalls CSE333, Spring 2021

System Call Trace (high-level view)

Code in Process A invokes
a system call; the
hardware then sets the
CPU to privileged mode

and traps into the OS, 0S
which invokes the (trusted)

appropriate system call
HW (trusted)

handler.
25

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

system call

WA UNIVERSITY of WASHINGTON LO7: Buffering, POSIX /0, Syscalls CSE333, Spring 2021

System Call Trace (high-level view)

Because the CPU
executing the thread
that’s in the OSis in

privileged mode, it is able

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

to use privileged 0S
instructions that interact (trusted)
directly with hardware
devices like disks. VANEVANEREVANEVA

HW (trusted)

26

WA UNIVERSITY of WASHINGTON LO7: Buffering, POSIX /0, Syscalls CSE333, Spring 2021

System Call Trace (high-level view)

Once the OS has finished
servicing the system call,
which might involve long waits
as it interacts with HW, it:

(1) Sets the CPU back to
unprivileged mode and

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

system call return

ON

(2) Returns out of the system (trusted)

call back to the user-level code

in Process A.
HW (trusted)

27

WA UNIVERSITY of WASHINGTON LO7: Buffering, POSIX /0, Syscalls CSE333, Spring 2021

System Call Trace (high-level view)

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

The process continues
executing whatever
code is next after the
system call invocation. 0S

(trusted)

Useful reference: HW (trusted)
CSPP § 8.1-8.3

(the 351 book)

A

28

WA UNIVERSITY of WASHINGTON LO7: Buffering, POSIX /0, Syscalls CSE333, Spring 2021

“Library calls” on x86/Linux

« A more accurate picture:
= Consider a typical Linux process
" |ts thread of execution can be in one | Cstandard
of several places: Moy

- In your program’s code

- Inglibc, ashared library containing
the C standard library, POSIX,
support, and more

« In the Linux architecture-independent
code

« |n Linux x86-64 code

architecture-dependent code

Linux kernel

29

WA UNIVERSITY of WASHINGTON LO7: Buffering, POSIX /0, Syscalls

“Library calls” on x86/Linux:

« Some routines your program
invokes may be entirely handled

by glibc without involving the
kernel

" e.g.strcmp () from stdio.h

" There is some initial overhead when
invoking functions in dynamically
linked libraries (during loading)

-« But after symbols are resolved,
invoking glibc routines is basically

as fast as a function call within your
program itself!

CSE333, Spring 2021

Option 1

| Cstandard
| library

' glibc

architecture-independent code

architecture-dependent code

Linux kernel

30

WA UNIVERSITY of WASHINGTON LO7: Buffering, POSIX /0, Syscalls CSE333, Spring 2021

“Library calls” on x86/Linux: Option 2

«» Some routines may be handled %
by glibc, but theyin turn

invoke Linux system calls | Cstandard e o)

= e.g. POSIX wrappers around Linux P e

syscalls

« POSIX readdir () invokes the
underlying Linux readdizr ()
" e.g. C stdio functions that read
and write from files
- fopen(), fclose (), fprintf ()

invoke underlying Linux open (),
close (), write (), etc.

architecture-dependent code

Linux kernel

31

CSE333, Spring 2021

WA UNIVERSITY of WASHINGTON LO7: Buffering, POSIX /0, Syscalls

“Library calls” on x86/Linux: Option 3

« Your program can choose to
directly invoke Linux system calls

as well

= Nothing is forcing you to link with
glibc and use it

= But relying on directly-invoked Linux
system calls may make your
program less portable across UNIX
varieties

architecture-dependent code

Linux kernel

32

WA UNIVERSITY of WASHINGTON LO7: Buffering, POSIX /0, Syscalls CSE333, Spring 2021

Details on x86/Linux

Your program

+ Let’s walk through how a Linux
system call actually works

= We'll assume 32-bit x86 using the C standard
modern SYSENTER / SYSEXIT x86 library
instructions glibc
- x86-64 code is similar, though details ﬂ

always change over time, so take this
as an example — not a debugging
guide

architecture-dependent code

Linux kernel

33

WA UNIVERSITY of WASHINGTON LO7: Buffering, POSIX /0, Syscalls CSE333, Spring 2021

System Calls on x86/Linux

OXFFFFFFFF

Your program
Remember our
process address

space picture? C standard
library

" |let’s add some

details: glibc

architecture-independent code

architecture-dependent code

Linux kernel

CPU

0x00000000

WA UNIVERSITY of WASHINGTON LO7: Buffering, POSIX /0, Syscalls CSE333, Spring 2021

System Calls on x86/Linux

OXFFFFFFFF Your program

Process is executing your
program code

C standard
library

glibc

architecture-independent code

architecture-dependent code

IRy

Program code

Linux kernel

unpriv CPU

0x00000000 35

WA UNIVERSITY of WASHINGTON LO7: Buffering, POSIX /0, Syscalls CSE333, Spring 2021

System Calls on x86/Linux

OXFFFFFFFF Your program

Process calls into a
glibc function

" e.g. fopen ()

= We'llignore the
messy details of
loading/linking
shared libraries

C s?andard POSIX
library

glibc

architecture-independent code

architecture-dependent code

Linux kernel

unpriv CPU

0x00000000

WA UNIVERSITY of WASHINGTON LO7: Buffering, POSIX /0, Syscalls CSE333, Spring 2021

System Calls on x86/Linux

» OXFFFFFFFF Your program

glibc begins the
process of invoking a
Linux system call
= glibc’s
fopen () likely
invokes Linux’s
open () system
call

C s?andard POSIX
library

SP

glibc

® Puts the system call #
and arguments into
registers

" Uses the call x86
instruction to call into
the routine architecture-dependent code
__kernel vsyscall
located in 1inux-

gate.so unpriv CPU
0x00000000 37

architecture-independent code

Linux kernel

WA UNIVERSITY of WASHINGTON LO7: Buffering, POSIX /0, Syscalls CSE333, Spring 2021

System Calls on x86/Linux

OXFFFFFFFF Your program
[
linux—-gate.soisa
vdso
= Avirtual C standard % POSIX
]) library
dynamically-linked SE)
shared glibc
object

® |s akernel-provided
shared library that is
plunked into a process’

architecture-independent code
address space

® Provides the intricate

machine code needed to
trigger a system call architecture-dependent code

Linux kernel

unpriv CPU

0x00000000

WA UNIVERSITY of WASHINGTON LO7: Buffering, POSIX /0, Syscalls CSE333, Spring 2021

System Calls on x86/Linux

OXFFFFFFFF Your program

linux—-gate.so
eventually invokes

the SYSENTER x86 ol

instruction C standard
" SYSENTER is x86's “fast library
system call” instruction glibc

Causes the CPU to raise
its privilege level

Traps into the Linux

kernel by changing the
SP, IP to a previously- architecture-independent code

determined location

Changes some
segmentation-related

registers (see CSE451) %archltecture-dependent code

Linux kernel

CPU

0x00000000

WA UNIVERSITY of WASHINGTON LO7: Buffering, POSIX /0, Syscalls CSE333, Spring 2021

System Calls on x86/Linux

OXFFFFFFFF

Your program

The kernel begins
executing code at P
the SYSENTER

entry point C standard
library

® |sin the architecture-
dependent part of Linux g|IbC

" [t'sjobis to:
Look up the system call

number in a system call %
dispatch table

Call into the address
stored in that table entry;
this is Linux’s system call
handler

architecture-independent code

architecture-dependent code
— For open (), the

handler is named
sys_open, andis
system call #5

Linux kernel

CPU

0x00000000 40

WA UNIVERSITY of WASHINGTON LO7: Buffering, POSIX /0, Syscalls CSE333, Spring 2021

The system call
handler executes

System Calls on x86/Linux

OXFFFFFFFF Your program

IR

What it does is

system-call specific C standard

library

It may take a long time to
execute, especially if it
has to interact with

glibc

hardware
Linux may choose to %
context switch the CPU
to a different runnable architecture-independent code
process

architecture-dependent code

Linux kernel

CPU

0x00000000

CSE333, Spring 2021

WA UNIVERSITY of WASHINGTON LO7: Buffering, POSIX /0, Syscalls

System Calls on x86/Linux

OXFFFFFFFF

Your program

Eventually, the

system call handler

. I
finishes

= Returns back to the
system call entry point
Places the system call’s g|IbC

return value in the
appropriate register

Calls SYSEXTIT to return
to the user-level code

C standard
library

architecture-independent code

%a rchitecture-dependent code

Linux kernel

CPU

0x00000000

WA UNIVERSITY of WASHINGTON LO7: Buffering, POSIX /0, Syscalls CSE333, Spring 2021

SYSEXIT transitions the
processor back to user-
mode code

System Calls on x86/Linux

OXFFFFFFFF Your program

Restores the
IP, SP to
user-land values

Sets the CPU
back to
unprivileged mode

C s?andard POSIX
library

SP

glibc

IRy

Changes some
segmentation-related
registers (see CSE451)

Returns the processor
back to glibc architecture-dependent code

architecture-independent code

Linux kernel

unpriv CPU

0x00000000

WA UNIVERSITY of WASHINGTON LO7: Buffering, POSIX /0, Syscalls CSE333, Spring 2021

System Calls on x86/Linux

OXFFFFFFFF Your program

glibc continues to
execute

= Might execute more

system calls C standard

= Eventually library

returns back to
your program code

glibc

architecture-independent code

architecture-dependent code

IR Linux kernel

unpriv CPU

0x00000000

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX I/O, Syscalls CSE333, Spring 2021

System Calls - Simplified Version

%~ The OS is a super complicated program “Overseer”
program for the computer.

" Jtis the only software that is directly trusted with Hardware
access

+ |f a user process wants to access an OS feature, they must
invoke a system call

= A system call involves context-switching into the OS, which has
some overhead

" The OS will handle hardware/special functionality directly, user
processes will not touch anything themselves. User process will
wait for OS to finish

= OS will eventually finish, return result to user, and context switch
back

45

CSE333, Spring 2021

WA UNIVERSITY of WASHINGTON LO7: Buffering, POSIX /0, Syscalls

A System Call Analogy

+» The OS is a very wise and knowledgeable wizard
" |t has many dangerous and powerful artifacts, but it doesn’t trust
others to use them. Will perform tasks on request.
+ If a civilian wants to access a “magical” feature, they must
fill out a request to the wizard.

" |t takes some time for the wizard to start processing the request,
they must ensure they do everything safely

" The wizard will handle the powerful artifacts themselves. The user
WILL NOT TOUCH ANYTHING.

= Wizard will take a second to analyze results and put away artifacts
before giving results back to the user.

46

w UNIVERSITY of WASHINGTON LO7: Buffering, POSIX I/O, Syscalls CSE333, Spring 2021

strace

+» A useful Linux utility that shows the sequence of system
calls that a process makes:

bash$ strace 1s 2>&1 | less

execve ("/usr/bin/1s", ["1s"], [/* 41 vars */]1) = 0

brk (NULL) = 0x15aa000

mmap (NULL, 4096, PROT_READ | PROT_WRI TE, MAP PRIVATE | MAP_ANONYMOUS , —1,
0x7£03bb741000

access ("/etc/ld.so.preload", R OK) = -1 ENOENT (No such file or directory)

open ("/etc/ld.so.cache", O RDONLY|O CLOEXEC) = 3

fstat (3, {st mode=S IFREG|0644, st size=126570, ...}) =0

mmap (NULL, 126570, PROT READ, MAP PRIVATE, 3, 0) = 0x7f03bb722000

close (3) =0

open ("/1lib64/libselinux.so.1", O RDONLY|O CLOEXEC) = 3

read (3, "\177ELF\2\I\1\0\0\NO\NONO\NONONONON3\NO>\0\N1I\NO\NONON3003\0NO\NONONONO". ..,
832) = 832

fstat (3, {st mode=S IFREG|0755, st size=155744, ...}) =0

mmap (NULL, 2255216, PROT_READ | PROT_EXEC, MAP PRIVATE | MAP DENYWRITE, 3, 0) =
0x7£03bb2£fa000

mprotect (0x7£03bb31e000, 2093056, PROT NONE) =

mmap (0x7£f03bb51d000, 8192, PROT_READ | PROT_WRITE ’
MAP PRIVATE | MAP FIXED | MAP DENYWRITE, 3, 0x23000) = 0x7f£03bb51d000

etc

W UNIVERSITY of WASHINGTON LO7: Buffering, POSIX I/O, Syscalls CSE333, Spring 2021

If You’re Curious

«» Download the Linux kernel source code

= Available from http://www.kernel.org/

*

man, section 2: Linux system calls

L)

0’0

" man 2 1ntro

" man 2 syscalls

L)

0’0

man, section 3: glibc/libc library functions

" man 3 1ntro

+» The book: The Linux Programming Interface by Michael
Kerrisk (keeper of the Linux man pages)

*

48

