
4

Question 3: It’s Fight or FLIGHT [24 pts]

We’re rewriting airport software to help the good folks at Sea-Tac keep track of flights. We will
use the following typedef-ed structs:

Each airport node holds a pointer to an array of Flights on the Heap and the length of that
array is stored in num_f. Pointers name and dest should also point to the Heap.
Assume we have the code shown below:

typedef struct t {

 size_t hr; // 0-23

 size_t min; // 0-59

} Time;

typedef struct f {

 char *dest; // destination airport

 Time dep; // departure time

 Time arr; // arrival time

} Flight;

typedef struct a {

 char *name;

 Flight *flights; // address of array of flights

 size_t num_f; // number of flights in array

 struct a *next;

} Airport; // node in linked list of airports

// Creates a new Airport (name: copied from argument, flights: NULL,

// num_f: 0, next: NULL) on the Heap and then pushes it to the front

// of our linked list of airports.

Airport *MakeAirport(char *name);

// Takes the provided Flight data and stores it in the flights array
// of the specified airport. Needs to update flights and num_f.

void AddFlight(Airport *a, char *dest, Time dep, Time arr);

Airport *head = NULL;

int main(int argc, char **argv) {

 Time t1 = {10,40}, t2 = {12,42};

 head = MakeAirport("SEA");

 AddFlight(head, "SFO", t1, t2);

 head = MakeAirport("SFO");

 return EXIT_SUCCESS;

}

Pathirat

Pathirat
Q1. C Programming & Memory Diagram 18sp | 1

SID: __________

5

(A) Draw a memory diagram for our linked list of airports before main() returns: [9 pt]

S F O \0 S E A \0 S F O \0

(B) Complete the implementation of AddFlight(). Assume stdio.h, stdlib.h, and
string.h are included. Assume arguments are valid, but check for other errors. [15 pt]

void AddFlight(Airport *a, char *dest, Time dep, Time arr) {
 // make more space for larger array
 // realloc works like malloc if a->flights == NULL
 a->flights = (Flight*) realloc(a->flights,
 (a->num_f+1)*sizeof(Flight));
 // check for realloc error
 if (a->flights == NULL) {
 perror("flight malloc/realloc failed");
 exit(EXIT_FAILURE);
 }

 // malloc space for destination name
 a->flights[a->num_f].dest = (char*) malloc((strlen(dest)+1)
 * sizeof(char));
 // check for malloc error
 if (a->flights[a->num_f].dest == NULL) {
 perror("dest malloc failed");
 exit(EXIT_FAILURE);
 }

 // copy data into appropriate fields
 strcpy(a->flights[a->num_f].dest,dest);
 a->flights[a->num_f].dep = dep;
 a->flights[a->num_f].arr = arr;

 // update number of flights
 a->num_f++;

}

42
12

40
10

min
hr

hr
min

dep

arr

 flights flights
name name

num_f num_f
next next

head

1 0
 dest

Pathirat
Q1. C Programming & Memory Diagram 18sp | 2

 7

Question 3: C Preprocessor [6 pts]

Consider the following code in a file called spooky.c:

#include <stdlib.h>
#include <stdint.h>
#include <stdio.h>

#define TRIPLE(x) x * 3
#ifdef DDEBUG
#define CONST 4
#else
#define CONST 2
#endif

int main(int argc, char **argv) {
 int32_t x = TRIPLE(2);
 int32_t y = TRIPLE(10 + CONST);
 printf(“%d, %d\n”, x, y);
 return EXIT_SUCCESS;
}

When compiled with gcc -Wall -std=c11 -DDEBUG -o spooky spooky.c, what does the
executable spooky output when run?

6, 16

Note that the flag -DDEBUG defines the symbol DEBUG, not the symbol
DDEBUG, so the second number should not be 22. Also recall that the
preprocessor does simple text substitution, but does not override order
of operations – so expanding TRIPLE to 10 + 2 * 3 would evaluate to 16,
not 36. Making both mistakes would lead to the second number being 42.

Pathirat
Q2. Preprocessor 19su | 3

Pathirat

 CSE 333 Midterm Exam 7/25/16 Sample Solution

 Page 7 of 8

Question 6. (20 points) Not quite the traditional what-does-it-print question. Consider
the following C++ program, which, as is usual, compiles and executes with no errors.

#include <iostream>
using namespace std;

int f(int &n, int *pa, int &k, int *pb) {
 k = pb[1];
 pb[2] = pa[1];
 n = *pb**pa;
 return k+1;
}

int main() {
 int a = 1;
 int &b = a;
 int ray[4] = { 10, 11, 12, 13 };
 int *p = ray;
 int *q = &ray[1];

 *p = f(ray[2], p, b, q);

 cout<< "a = " << a << ", b = " << b << ", *q = " << *q << endl;
 cout<< "ray = ";
 for (int k = 0; k < 4; k++)
 cout << ray[k] << " ";
 cout << endl;

 return 0;
}

What output does this program produce when it runs? (You are not required to draw a
boxes-n-arrows diagram, but you might find doing so to be very helpful, and it might
help us if we need to assign partial credit to a not-completely-perfect answer.)

a = 12, b = 12, *q = 11

ray = 13 11 110 11

Pathirat
Q3. References, Pointers, and Arrays 16Su | 4

Pathirat

CSE 333 18su Midterm Exam July 23, 2018 Sample Solution

 Page 8 of 15

Question 5. (26 points) One of the summer interns is trying to learn C++ and has written
the following class that stores an array of doubles and a main program that uses it.

class Doubles {
public:
 // construct Doubles given array and # elements
 Doubles(double *vals, uint32_t size)
 : v_(new double[size]), sz_(size) {
 for (uint32_t k = 0; k < size; k++)
 v_[k] = vals[k];
 }

 // destructor, other standard operations
 ~Doubles() { delete[] v_; }
 Doubles(const Doubles &other) = default;
 Doubles &operator=(const Doubles &other) = default;

 // "getter" functions
 double get(uint32_t k) const { return v_[k]; }
 uint32_t length() const { return sz_; }

private:
 double* v_; // heap-allocated array
 uint32_t sz_; // size of array
};

// print data in a Doubles object
void prdbl(Doubles d) {
 ///// ***>>>> here <<<<*** /////
 cout << "[";
 for (uint32_t k = 0; k < d.length(); k++)
 cout << d.get(k) << " ";
 cout << "]" << endl;
}

int main() {
 double a[] = { 1.1, 2.2, 3.3 };
 Doubles d3(a,3);
 Doubles* dp = new Doubles(d3);
 prdbl(d3);
 prdbl(*dp);
 delete dp;
 return 0;
}

Please answer the questions about this class on the next page and remove this page from
the exam. This page will not be scanned for grading.

Pathirat
Q4. C++ Classes 18Su | 5

Pathirat

CSE 333 18su Midterm Exam July 23, 2018 Sample Solution

 Page 9 of 15

Question 5. (cont.) (a) (12 points) Draw a precise diagram showing the contents of
memory the first time execution reaches the comment ///// ***>>>> here <<<<*** /////
at the beginning of function prdbl. Your diagram should clearly show the contents of
the individual stack frames for main and prdbl and the contents of heap storage, with
appropriate arrows from pointers to values that they reference. Then continue with the
question on the next page.

 Stack Heap

(continued on next page)

1.1
2.2
3.3

1.1
2.2
3.3

main

a

d3

dp

v_

sz_ _3_

prdbl

d

k _____

v_

sz_ _3_

v_

sz_ _3_

Pathirat
Q4. C++ Classes 18Su | 6

CSE 333 18su Midterm Exam July 23, 2018 Sample Solution

 Page 10 of 15

Question 5. (cont.) (b) (3 points) When the program is executed it crashes. Exactly
where does it crash, when, and why? (what is the problem?) (Be brief but precise!)

The code crashes on exit from the second call to prdbl when it attempts to delete
the array of doubles on the heap a second time.

There are multiple Doubles objects, all of which share the same array of doubles
on the heap because the default copy constructor does a shallow copy of the object
data and does not create a new array for each object. This includes the call-by-
value objects created when prdbl is called.

When these objects are deleted the destructor deletes the array on the heap
resulting in dangling pointers for all other objects constructed from the original one
(d3). The second time a Doubles object is deleted, a double delete error occurs,
and this happens when the local parameter object is deleted at the end of the second
call to prdbl.

(Grading note: explanations did not need to be this detailed for full credit as long as
they pinpointed the exact problem and location.)

(c) (3 points) Our summer intern has been googling and thinks that something called the
“Rule of 3” is the reason for the crash. The intern proposes replacing the destructor with
the following code to match the copy constructor and assignment:

 ~Doubles() = default;

Will the program run without crashing if this is done? Why or why not? (briefly)

Yes, it will run without crashing since the array that is shared will never be deleted.
There will be a memory leak, because the heap array is never deleted, but there
won’t be double-delete errors.

Pathirat
Q4. C++ Classes 18Su | 7

CSE 333 18su Midterm Exam July 23, 2018 Sample Solution

 Page 11 of 15

Question 5. (cont.) (d) (8 points) What really needs to be done to fix this class so it
works properly and behaves appropriately for a C++ class? Give the changes needed
below by listing which functions (methods) need to be changed in the original code and
writing the correct code below.

We should create a proper copy constructor and assignment operator for Doubles
so that each instance of the class has its own private copy of the array. Replace the
default versions with the following or something equivalent:

 Doubles(const Doubles &other)

 : v_(new double[other.sz_]), sz_(other.sz_) {

 for (uint32_t k = 0; k < sz_; k++)

 v_[k] = other.v_[k];

 }

 Doubles &operator=(const Doubles &other) {

 if (this == &other)

 return *this;

 delete [] v_;

 v_ = new double[other.sz_];

 sz_ = other.sz_;

 for (uint32_t k = 0; k < sz_; k++)

 v_[k] = other.v_[k];

 return *this;

 }

Pathirat
Q4. C++ Classes 18Su | 8

2

Question 1: You MAKE Me Whole [12 pts]

For the following questions, you may use the variable CFLAGS = -Wall -g -std=c11.

(A) We have a file oneA.c that includes oneA.h. Write a Makefile target to produce the
executable oneA. [3 pt]
oneA: oneA.c oneA.h
 gcc –Wall –g –std=c11 –o oneA oneA.c
 OR
 gcc $(CFLAGS) –o oneA oneA.c

Recall that targets can execute multiple commands. The touch command updates the
timestamp on a file to the current time (and creates the file if it did not previously exist).

(B) Draw out a corresponding directed acyclic graph for the Makefile on the left. [4 pt]

cse: cse.o engr.o
 gcc $(CFLAGS) -o cse *.o

cse.o: cse.c engr.h uw.h
 touch engr.o
 gcc $(CFLAGS) -c cse.c

engr.o: engr.c engr.h
 gcc $(CFLAGS) -c engr.c

uw.o: uw.c uw.h
 gcc $(CFLAGS) -c uw.c

clean:
 rm -f *.o *~ cse

Note: direction of arrows didn’t matter as long as
consistent.

(C) A likely dependency error should be apparent from part B. Describe the fix. [2 pt]
Add uw.o to the source list in the cse target.

(D) Even with the dependency fix from part C applied, running make clean then make
results in a linking error! Briefly describe why this happens. [3 pt]

make clean removes all object files. In addressing the target cse, we first run the
commands in the cse.o target, which creates an empty, but “updated” engr.o file.
Therefore, we don’t run the engr.o target commands and there is an error when
linking to the empty engr.o file.

engr.o

engr.c

engr.h

uw.o

uw.c

uw.h

cse.c

cse

cse.o

Pathirat
Q5. Makefile 18sp | 9

Pathirat

 12

Question 5: C File I/O [14 pts]

a) [6 pts] Suppose you are using the C standard library to write 1024 total bytes to disk. To do so, you
invoke the fwrite() function repeatedly, writing N bytes each time until all 1024 bytes are written.

Give a value of N such that the code would be more efficient with buffering turned on than turned
off (assume a buffer size of 512 bytes). Briefly explain why.

Any value between 1 (inclusive) and 512 (exclusive).

If each fwrite call writes 1 byte of data, without buffering we would
need to make 1024 accesses to disk to write all of the data. With
buffering, 512 of those bytes would be saved up before writing it all to
disk at once, requiring only 2 accesses to disk. Since disk accesses take
a relatively enormous amount of time, any value of N less than 512 would
be improved with buffering turned on.

Give a value of N such that the code would be more efficient with buffering turned off than turned
on. Briefly explain why.

Any value between 512 (inclusive) and 1024 (inclusive).

If we write the data using a single fwrite call writing all 1024 bytes at
once, we only require one disk access. With buffering, things would be
slightly slower because we would write 512 bytes to disk at once,
incurring 2 disk accesses. Note that even for a value between 512 and
1024, for which it would be necessary to make 2 disk accesses anyway, it
would still be slightly slower to use buffering because it would require
copying the data to an intermediate buffer and then writing to disk (but
still use 2 disk accesses).

Pathirat
Q6. File I/O 19su | 10

 13

b) [8 pts] Suppose you have a file on disk called midterm_soln.txt with a guaranteed size of
exactly 50 bytes. The following is a partially-implemented POSIX read loop that reads in those 50
bytes from the file and copies them into a buffer called buf. Complete the code so that after the last
line, buf contains those 50 bytes. Make sure to clean up the open file descriptor.

#include <fctnl.h>
#include <unistd.h>
#define BUFFER_SIZE 50

char buf[BUFFER_SIZE];
int bytes_left = BUFFER_SIZE;
int fd = open(“midterm_soln.txt”, O_RDONLY);

while (1) {
 ssize_t res = read(fd, ___ buf + (BUFFER_SIZE – bytes_left) ___,
 ___ bytes_left ___);
 if (res == 0) {
 break;
 } else if (res == -1) {
 if (errno != ___ EINTR ___) {
 perror("read error");
 exit(1);
 }
 } else {

 ___ bytes_left -= res ___;
 }
}
___ close(fd) ___; // Clean up the fd

Pathirat
Q6. File I/O 19su | 11

 CSE 333 18au Midterm Exam Nov. 2, 2018
Sample Solution

 Page 8 of 12

Question 5. (16 points) Constructor madness. Consider the following C++ program
which does compile and execute successfully. On the next page, write the output
produced when it is executed.

#include <iostream>
using namespace std;

static int idnum = 1; // global var: next obj id number

class obj {
public:
 obj() { // default constructor
 id_ = idnum; idnum++;
 cout << "obj " << id_ << ": default constructor" << endl;
 }
 obj(int n) { // int constructor
 id_ = idnum; idnum++;
 cout << "obj " << id_ << ": int constructor" << endl;
 }
 obj(const obj & other) { // copy constructor
 id_ = idnum; idnum++;
 cout << "obj " << id_ << ": copy constructor from " <<

other.id_ << endl;
 }
 obj& operator=(const obj & other) { // assignment operator
 cout << "obj " << id_ << ": assignment operator from " <<

other.id_ << endl;
 return *this;
 }
 ~obj() { // destructor
 cout << "obj " << id_ << ": destructor" << endl;
 }
private:
 int id_; // this obj’s id number
};

int main() {
 obj a; // output is obj 1: default constructor
 obj b(a);
 obj c = 5;
 obj d = c;
 a = c;
 b = 5;
 cout << "done!" << endl;
}

Please write your answer on the next page and remove this page from the exam. This
page will not be scanned for grading.

(continued on next page)

Pathirat
Q7. Constructor Insanity 18au | 12

 CSE 333 18au Midterm Exam Nov. 2, 2018
Sample Solution

 Page 9 of 12

Queston 5 (cont.) On this page, write the output produced when the program from the
previous page is executed. It does compile and execute successfully.

Note that when an object is constructed, the constructor stores a unique integer id_
number, and operations on each object print out that object’s id_ number when they are
executed. The first object’s id_ number is 1, and each new object has an id_ number
that is 1 greater than the previous object.

Also note that the constructors and assignment operations ignore their arguments. That,
of course, would not happen in real code, but for this question it was done to save space
since the values of the arguments are not needed to trace the program’s execution.

The first output line is written for you. Write the rest of the program’s output after that.

Output:
 obj 1: default constructor

obj 2: copy constructor from 1

obj 3: int constructor

obj 4: copy constructor from 3

obj 1: assignment operator from 3

obj 5: int constructor

obj 2: assignment operator from 5

obj 5: destructor

done!

obj 4: destructor

obj 3: destructor

obj 2: destructor

obj 1: destructor

Note: for the assignment b=5, the compiler has to construct an obj temporary
using the class obj int constructor, and then use that temporary object as the
source value for the assignment to b. The compiler then generates code to
automatically destroy the temporary. When we ran the program, the destructor
code for the temporary executed right after the assignment, but it could have
happened any time before the program terminated. Solutions that showed the
destructor executing anywhere after the assignment received proper credit.

Pathirat
Q7. Constructor Insanity 18au | 13

