WA UNIVERSITY of WASHINGTON

Concurrency: Processes

L25: Concurrency and Processes

CSE 333 Spring 2019

Guest Instructor:

Teaching Assistants:
Andrew Hu

Cheng Ni

Guramrit Singh
Rehaan Bhimani
Zachary Keyes

Andrew Hu

Austin Chen
Cosmo Wang
Mengqi Chen
Renshu Gu

CSE333, Winter 2020

Brennan Stein
Diya Joy

Pat Kosakanchit
Travis McGaha

W UNIVERSITY of WASHINGTON L25: Concurrency and Processes CSE333, Winter 2020

Administrivia

«» Classes have moved online to avoid virus transmission

= Stay healthy everyone!

+ Final Exam is cancelled
" Grade weights will be updated, more info coming soon

+ Lectures posted online through Panopto on Canvas
+ Section will be online through Zoom
+» Office Hours are online through Zoom

+» hw4 due Thursday (3/12)

= Submissions accepted through Sunday, as usual

» Course evaluations! (see Piazza)

/
*

W UNIVERSITY of WASHINGTON L25: Concurrency and Processes CSE333, Winter 2020

Outline

% Searchserver
= Sequential
" Concurrent via forking threads — pthread create ()
= Concurrent via forking processes — fork ()
" Concurrent via non-blocking, event-driven /0O — ()

« We won’t get to this ®

« Reference: Computer Systems: A Programmer’s
Perspective, Chapter 12 (CSE 351 book)

W UNIVERSITY of WASHINGTON L25: Concurrency and Processes CSE333, Winter 2020

Review: Address Spaces

OxFF...FF

+ A process executes within an
address space SP

" |ncludes segments for different parts
of memory

" Process tracks its current state using
the stack pointer (SP) and program
counter (PC)

0x00...00

W UNIVERSITY of WASHINGTON L25: Concurrency and Processes CSE333, Winter 2020

Creating New Processes

+ [pid t fork();

" Creates a new process (the “child”) that is an exact clone* of the
current process (the “parent”)

- *Everything is cloned except threads

" The new process has a separate virtual address space from the
parent

W UNIVERSITY of WASHINGTON L25: Concurrency and Processes

Main Uses of fork ()

= Fork a child to handle some work
- Server forks to handle a new connection
- Web browser forks to render a new website
— Mainly for security purposes (separate address spaces)
" Fork a child that then exec’s a new program
- Shell forks and execs the program you want to run

- 333 grading script forks and execs your executable

— Using Python subprocess

CSE333, Winter 2020

W UNIVERSITY of WASHINGTON L25: Concurrency and Processes

fork () and Address Spaces

+ Fork cause the OS to
clone the SP
address space

= The copies of the
memory segments are
(nearly) identical

" The new process has
copies of the parent’s
data, stack-allocated
variables, open file
descriptors, etc.

PARENT

fork ()

CSE333, Winter 2020

CHILD

W UNIVERSITY of WASHINGTON L25: Concurrency and Processes

fork ()

« fork () has peculiar semantics
" The parent invokes fork ()
" The OS clones the parent

" Both the parent and the child return
from fork

- Parent receives child’s pid
« Child receives a 0

CSE333, Winter 2020

W UNIVERSITY of WASHINGTON L25: Concurrency and Processes

fork ()

« fork () has peculiar semantics
" The parent invokes fork ()
" The OS clones the parent

" Both the parent and the child return
from fork

- Parent receives child’s pid
« Child receives a 0

clone

CSE333, Winter 2020

W UNIVERSITY of WASHINGTON L25: Concurrency and Processes

fork ()

« fork () has peculiar semantics
" The parent invokes fork ()
" The OS clones the parent

" Both the parent and the child return
from fork

- Parent receives child’s pid
« Child receives a 0

+ See fork example.cc

child pid

CSE333, Winter 2020

10

W UNIVERSITY of WASHINGTON L25: Concurrency and Processes

CSE333, Winter 2020

Concurrent Server with Processes

+ The parent process blocks on accept (), waiting for a
new client to connect

" When a new connection arrives, the parent calls fork () to
create a child process

" The child process handles that new connection and exit ()’s
when the connection terminates

+» Remember that children become “zombies” after death
" Option A: Parentcallswait () to “reap” children
® Option B: Use a double-fork trick

11

W UNIVERSITY of WASHINGTON L25: Concurrency and Processes CSE333, Winter 2020

Double-fork Trick

12

W UNIVERSITY of WASHINGTON L25: Concurrency and Processes CSE333, Winter 2020

Double-fork Trick

Q
%
o
Cx

13

W UNIVERSITY of WASHINGTON L25: Concurrency and Processes CSE333, Winter 2020

Double-fork Trick

~

S, fork () child

14

W UNIVERSITY of WASHINGTON L25: Concurrency and Processes CSE333, Winter 2020

Double-fork Trick

S, fork () grandchild

15

W UNIVERSITY of WASHINGTON L25: Concurrency and Processes CSE333, Winter 2020

Double-fork Trick

childexit ()’s/parentwait ()’s

16

W UNIVERSITY of WASHINGTON L25: Concurrency and Processes CSE333, Winter 2020

Double-fork Trick

m parent closes its
client connection

17

W UNIVERSITY of WASHINGTON L25: Concurrency and Processes CSE333, Winter 2020

Double-fork Trick

N —
«— R

18

W UNIVERSITY of WASHINGTON L25: Concurrency and Processes CSE333, Winter 2020

Double-fork Trick

N —
«— R

—~~

1 £ork () child

-

<+ -

T~ ~ fork () grandchild

«—--" ©exit()

19

W UNIVERSITY of WASHINGTON L25: Concurrency and Processes CSE333, Winter 2020

Double-fork Trick

—
«— R
N —
«— R

20

W UNIVERSITY of WASHINGTON L25: Concurrency and Processes CSE333, Winter 2020

Double-fork Trick

21

W UNIVERSITY of WASHINGTON L25: Concurrency and Processes

Review Question

+ What will happen when one of the grandchildren
processes finishes?

= \/ote at http://PollEv.com/justinh

Zombie until grandparent reaps
Zombie until init reaps
. ZOMBIE FOREVER!!!

We’re lost...

moo®p

CSE333, Winter 2020

22

W UNIVERSITY of WASHINGTON L25: Concurrency and Processes

Concurrent with Processes Pseudocode

+ See searchserver processes/

7

// Server set up
while (1) {
sock fd = accept();
pid = fork();
if (pid == 0) {
// 2?72 process

} else {
// 2?72 process

CSE333, Winter 2020

23

WA UNIVERSITY of WASHINGTON

L25: Concurrency and Processes

CSE333, Winter 2020

Concurrent with Processes Pseudocode

+ See searchserver processes/

7

// Server set up
while (1) {

sock fd = accept();

pid = fork();
if (pid == 0) {
// Child process

} else {
// Parent process

WA UNIVERSITY of WASHINGTON

L25: Concurrency and Processes

CSE333, Winter 2020

Concurrent with Processes Pseudocode

+ See searchserver processes/

7

// Server set up
while (1) {

sock fd = accept();

pid = fork();
if (pid == 0) {
// Child process
pid = fork();
if (pid == 0) {
// 2?72 process

} else {
// Parent process

WA UNIVERSITY of WASHINGTON

L25: Concurrency and Processes

CSE333, Winter 2020

Concurrent with Processes Pseudocode

+ See searchserver processes/

7

// Server set up
while (1) {
sock fd = accept();
pid = fork();
if (pid == 0) {
// Child process
pid = fork();
if (pid == 0)
// Grand-child process
HandleClient (sock fd,
}

} else {
// Parent process

L25: Concurrency and Processes CSE333, Winter 2020

WA UNIVERSITY of WASHINGTON

Concurrent with Processes Pseudocode

+ See searchserver processes/

(... // Server set up
while (1) {
sock fd = accept();
pid = fork();
if (pid == 0) {
// Child process
pid = fork();
if (pid == 0)
// Grand-child process
HandleClient (sock fd, ...);
}

// Clean up resources...
ex1it ()

} else {
// Parent process

WA UNIVERSITY of WASHINGTON

L25: Concurrency and Processes

Concurrent with Processes Pseudocode

+ See searchserver processes/

[// Server set up

CSE333, Winter 2020

while

pid
if

(1)

sock fd

{

= accept ()

= fork();

(pid

pid =

== 0) {

// Child process

fork () ;

if (pid == 0)
// Grand-child process
HandleClient (sock fd, ...);

}

// Clean up resources...

ex1it ()

} else {

// Parent process

// Wait for child to immediately die

wait () ;

close (sock fd);

28

W UNIVERSITY of WASHINGTON L25: Concurrency and Processes CSE333, Winter 2020

Why Concurrent Processes?

+~ Advantages:

= Almost as simple to code as sequential
- In fact, most of the code is identical!

= Concurrent execution leads to better CPU, network utilization

+» Disadvantages:

" Processes are heavyweight
- Relatively slow to fork
- Context switching latency is high

= Communication between processes is complicated

30

W UNIVERSITY of WASHINGTON L25: Concurrency and Processes CSE333, Winter 2020

How Fast is fork () ?

+ See forklatency.cc

+» ~ 0.5 milliseconds per fork*
= . maximum of (1000/0.5) = 2,000 connections/sec/core

= ~175 million connections/day/core
« This is fine for most servers

- Too slow for super-high-traffic front-line web services

— Facebook served ~ 750 billion page views per day in 2013!
Would need 3-6k cores just to handle fork (), i.e. without doing any work
for each connection

*Past measurements are not indicative of future performance — depends on hardware, OS,
software versions, ...

Tested on attu (3/2/2020)

31

W UNIVERSITY of WASHINGTON L25: Concurrency and Processes CSE333, Winter 2020

How Fast is pthread create()?

+» See threadlatency.cc

+» ~0.05 milliseconds per thread creation*

®= ~10x faster than fork ()

= . maximum of (1000/0.05) = 20,000 connections/sec/core
= ~2 billion connections/day/core

Mush faster, but writing safe multithreaded code can be
serious voodoo

*Past measurements are not indicative of future performance — depends on hardware, OS,
software versions, ..., but will typically be an order of magnitude faster than fork()

Tested on attu (3/2/2020)

32

W UNIVERSITY of WASHINGTON L25: Concurrency and Processes CSE333, Winter 2020

Aside: Thread Pools

+ In real servers, we’d like to avoid overhead needed to
create a new thread or process for every request

" We wrote a Thread Pool implementation for you in HW4

+ |dea: Thread Pools:
= Create a fixed set of worker threads when the server starts
" When a request arrives, add it to a queue of tasks (using locks)
" Each thread tries to remove a task from the queue (using locks)

" When a thread is finished with one task, it tries to get a new task
from the queue (using locks)

33

