
CSE333, Winter 2020L25: Concurrency and Processes

Concurrency: Processes
CSE 333 Spring 2019
Concurrency: Processes
CSE 333 Spring 2019

Guest Instructor: Andrew Hu

Teaching Assistants:
Andrew Hu Austin Chen Brennan Stein
Cheng Ni Cosmo Wang Diya Joy
Guramrit Singh Menqi Chen Pat Kosakanchit
Rehaan Bhimani Renshu Gu Travis McGaha
Zachary Keyes

CSE333, Winter 2020L25: Concurrency and Processes

Administrivia

 Classes have moved online to avoid virus transmission
 Stay healthy everyone!

 Final Exam is cancelled
 Grade weights will be updated, more info coming soon

 Lectures posted online through Panopto on Canvas
 Section will be online through Zoom
 Office Hours are online through Zoom

 hw4 due Thursday (3/12)
 Submissions accepted through Sunday, as usual

 Course evaluations! (see Piazza)
2

CSE333, Winter 2020L25: Concurrency and Processes

Outline

 searchserver
 Sequential
 Concurrent via forking threads – pthread_create()
 Concurrent via forking processes – fork()


•

 Reference: Computer Systems: A Programmer’s
Perspective, Chapter 12 (CSE 351 book)

3

CSE333, Winter 2020L25: Concurrency and Processes

Review: Address Spaces

 A process executes within an
address space
 Includes segments for different parts

of memory
 Process tracks its current state using

the stack pointer (SP) and program
counter (PC)

4

0xFF…FF

0x00…00

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

CSE333, Winter 2020L25: Concurrency and Processes

Creating New Processes



 Creates a new process (the “child”) that is an exact clone* of the
current process (the “parent”)
• *Everything is cloned except threads

 The new process has a separate virtual address space from the
parent

5

pid_t fork();

CSE333, Winter 2020L25: Concurrency and Processes

Main Uses of fork()

 Fork a child to handle some work

• Server forks to handle a new connection

• Web browser forks to render a new website

– Mainly for security purposes (separate address spaces)

 Fork a child that then exec’s a new program

• Shell forks and execs the program you want to run

• 333 grading script forks and execs your executable

– Using Python subprocess

6

CSE333, Winter 2020L25: Concurrency and Processes

fork() and Address Spaces

 Fork cause the OS to
clone the
address space
 The copies of the

memory segments are
(nearly) identical

 The new process has
copies of the parent’s
data, stack-allocated
variables, open file
descriptors, etc.

7

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

fork()PARENT CHILD

CSE333, Winter 2020L25: Concurrency and Processes

fork()

 fork() has peculiar semantics
 The parent invokes fork()
 The OS clones the parent
 Both the parent and the child return

from fork
• Parent receives child’s pid
• Child receives a 0

8

parent

OS

fork()

CSE333, Winter 2020L25: Concurrency and Processes

fork()

 fork() has peculiar semantics
 The parent invokes fork()
 The OS clones the parent
 Both the parent and the child return

from fork
• Parent receives child’s pid
• Child receives a 0

9

parent child

OS

clone

CSE333, Winter 2020L25: Concurrency and Processes

fork()

 fork() has peculiar semantics
 The parent invokes fork()
 The OS clones the parent
 Both the parent and the child return

from fork
• Parent receives child’s pid
• Child receives a 0

 See fork_example.cc

10

parent child

OS

child pid 0

CSE333, Winter 2020L25: Concurrency and Processes

Concurrent Server with Processes

 The parent process blocks on accept(), waiting for a
new client to connect
 When a new connection arrives, the parent calls fork() to

create a child process
 The child process handles that new connection and exit()’s

when the connection terminates

 Remember that children become “zombies” after death
 Option A: Parent calls wait() to “reap” children
 Option B: Use a double-fork trick

11

CSE333, Winter 2020L25: Concurrency and Processes

Double-fork Trick

12

server

CSE333, Winter 2020L25: Concurrency and Processes

Double-fork Trick

13

client

server accept()

CSE333, Winter 2020L25: Concurrency and Processes

Double-fork Trick

14

client

server

server
fork() child

CSE333, Winter 2020L25: Concurrency and Processes

Double-fork Trick

15

client server

server

server
fork() grandchild

CSE333, Winter 2020L25: Concurrency and Processes

Double-fork Trick

16

client server

server

child exit()’s / parent wait()’s

CSE333, Winter 2020L25: Concurrency and Processes

Double-fork Trick

17

client server

server parent closes its
client connection

CSE333, Winter 2020L25: Concurrency and Processes

Double-fork Trick

18

client server

server

CSE333, Winter 2020L25: Concurrency and Processes

Double-fork Trick

19

client server

server

server

server

client

fork() grandchild
exit()

fork() child

CSE333, Winter 2020L25: Concurrency and Processes

Double-fork Trick

20

client server

client server

server

CSE333, Winter 2020L25: Concurrency and Processes

Double-fork Trick

21

client server

client server

client server

client server

client server

client server
client server

client server

client server

server

CSE333, Winter 2020L25: Concurrency and Processes

Review Question

 What will happen when one of the grandchildren
processes finishes?
 Vote at http://PollEv.com/justinh

A. Zombie until grandparent exits
B. Zombie until grandparent reaps
C. Zombie until init reaps
D. ZOMBIE FOREVER!!!
E. We’re lost…

22

CSE333, Winter 2020L25: Concurrency and Processes

Concurrent with Processes Pseudocode
 See searchserver_processes/

23

... // Server set up
while (1) {

sock_fd = accept();
pid = fork();
if (pid == 0) {

// ??? process

} else {
// ??? process

}
}

CSE333, Winter 2020L25: Concurrency and Processes

Concurrent with Processes Pseudocode
 See searchserver_processes/

24

... // Server set up
while (1) {

sock_fd = accept();
pid = fork();
if (pid == 0) {

// Child process

} else {
// Parent process

}
}

CSE333, Winter 2020L25: Concurrency and Processes

Concurrent with Processes Pseudocode
 See searchserver_processes/

25

... // Server set up
while (1) {

sock_fd = accept();
pid = fork();
if (pid == 0) {

// Child process
pid = fork();
if (pid == 0) {

// ??? process

}

} else {
// Parent process

}
}

CSE333, Winter 2020L25: Concurrency and Processes

Concurrent with Processes Pseudocode
 See searchserver_processes/

26

... // Server set up
while (1) {

sock_fd = accept();
pid = fork();
if (pid == 0) {

// Child process
pid = fork();
if (pid == 0) {

// Grand-child process
HandleClient(sock_fd, ...);

}

} else {
// Parent process

}
}

CSE333, Winter 2020L25: Concurrency and Processes

Concurrent with Processes Pseudocode
 See searchserver_processes/

27

... // Server set up
while (1) {

sock_fd = accept();
pid = fork();
if (pid == 0) {

// Child process
pid = fork();
if (pid == 0) {

// Grand-child process
HandleClient(sock_fd, ...);

}
// Clean up resources...
exit();

} else {
// Parent process

}
}

CSE333, Winter 2020L25: Concurrency and Processes

Concurrent with Processes Pseudocode
 See searchserver_processes/

28

... // Server set up
while (1) {

sock_fd = accept();
pid = fork();
if (pid == 0) {

// Child process
pid = fork();
if (pid == 0) {

// Grand-child process
HandleClient(sock_fd, ...);

}
// Clean up resources...
exit();

} else {
// Parent process
// Wait for child to immediately die
wait();
close(sock_fd);

}
}

CSE333, Winter 2020L25: Concurrency and Processes

Why Concurrent Processes?

 Advantages:
 Almost as simple to code as sequential

• In fact, most of the code is identical!

 Concurrent execution leads to better CPU, network utilization

 Disadvantages:
 Processes are heavyweight

• Relatively slow to fork
• Context switching latency is high

 Communication between processes is complicated

30

CSE333, Winter 2020L25: Concurrency and Processes

How Fast is fork()?

 See forklatency.cc

 ~ 0.5 milliseconds per fork*
 maximum of (1000/0.5) = 2,000 connections/sec/core
 ~175 million connections/day/core

• This is fine for most servers
• Too slow for super-high-traffic front-line web services

– Facebook served ~ 750 billion page views per day in 2013!
Would need 3-6k cores just to handle fork(), i.e. without doing any work
for each connection

 *Past measurements are not indicative of future performance – depends on hardware, OS,
software versions, …

 Tested on attu (3/2/2020)

31

CSE333, Winter 2020L25: Concurrency and Processes

How Fast is pthread_create()?

 See threadlatency.cc

 0.05 milliseconds per thread creation*
 10x faster than fork()
 maximum of (1000/0.05) = 20,000 connections/sec/core
 2 billion connections/day/core

 Mush faster, but writing safe multithreaded code can be
serious voodoo

 *Past measurements are not indicative of future performance – depends on hardware, OS,
software versions, …, but will typically be an order of magnitude faster than fork()

 Tested on attu (3/2/2020)

32

CSE333, Winter 2020L25: Concurrency and Processes

Aside: Thread Pools

 In real servers, we’d like to avoid overhead needed to
create a new thread or process for every request
 We wrote a Thread Pool implementation for you in HW4

 Idea: Thread Pools:
 Create a fixed set of worker threads when the server starts
 When a request arrives, add it to a queue of tasks (using locks)
 Each thread tries to remove a task from the queue (using locks)
 When a thread is finished with one task, it tries to get a new task

from the queue (using locks)

33

