
CSE333, Winter 2020L25: Concurrency and Processes

Concurrency: Processes
CSE 333 Spring 2019
Concurrency: Processes
CSE 333 Spring 2019

Guest Instructor: Andrew Hu

Teaching Assistants:
Andrew Hu Austin Chen Brennan Stein
Cheng Ni Cosmo Wang Diya Joy
Guramrit Singh Menqi Chen Pat Kosakanchit
Rehaan Bhimani Renshu Gu Travis McGaha
Zachary Keyes

CSE333, Winter 2020L25: Concurrency and Processes

Administrivia

 Classes have moved online to avoid virus transmission
 Stay healthy everyone!

 Final Exam is cancelled
 Grade weights will be updated, more info coming soon

 Lectures posted online through Panopto on Canvas
 Section will be online through Zoom
 Office Hours are online through Zoom

 hw4 due Thursday (3/12)
 Submissions accepted through Sunday, as usual

 Course evaluations! (see Piazza)
2

CSE333, Winter 2020L25: Concurrency and Processes

Outline

 searchserver
 Sequential
 Concurrent via forking threads – pthread_create()
 Concurrent via forking processes – fork()

•

 Reference: Computer Systems: A Programmer’s
Perspective, Chapter 12 (CSE 351 book)

3

CSE333, Winter 2020L25: Concurrency and Processes

Review: Address Spaces

 A process executes within an
address space
 Includes segments for different parts

of memory
 Process tracks its current state using

the stack pointer (SP) and program
counter (PC)

4

0xFF…FF

0x00…00

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

CSE333, Winter 2020L25: Concurrency and Processes

Creating New Processes

 Creates a new process (the “child”) that is an exact clone* of the
current process (the “parent”)
• *Everything is cloned except threads

 The new process has a separate virtual address space from the
parent

5

pid_t fork();

CSE333, Winter 2020L25: Concurrency and Processes

Main Uses of fork()

 Fork a child to handle some work

• Server forks to handle a new connection

• Web browser forks to render a new website

– Mainly for security purposes (separate address spaces)

 Fork a child that then exec’s a new program

• Shell forks and execs the program you want to run

• 333 grading script forks and execs your executable

– Using Python subprocess

6

CSE333, Winter 2020L25: Concurrency and Processes

fork() and Address Spaces

 Fork cause the OS to
clone the
address space
 The copies of the

memory segments are
(nearly) identical

 The new process has
copies of the parent’s
data, stack-allocated
variables, open file
descriptors, etc.

7

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

fork()PARENT CHILD

CSE333, Winter 2020L25: Concurrency and Processes

fork()

 fork() has peculiar semantics
 The parent invokes fork()
 The OS clones the parent
 Both the parent and the child return

from fork
• Parent receives child’s pid
• Child receives a 0

8

parent

OS

fork()

CSE333, Winter 2020L25: Concurrency and Processes

fork()

 fork() has peculiar semantics
 The parent invokes fork()
 The OS clones the parent
 Both the parent and the child return

from fork
• Parent receives child’s pid
• Child receives a 0

9

parent child

OS

clone

CSE333, Winter 2020L25: Concurrency and Processes

fork()

 fork() has peculiar semantics
 The parent invokes fork()
 The OS clones the parent
 Both the parent and the child return

from fork
• Parent receives child’s pid
• Child receives a 0

 See fork_example.cc

10

parent child

OS

child pid 0

CSE333, Winter 2020L25: Concurrency and Processes

Concurrent Server with Processes

 The parent process blocks on accept(), waiting for a
new client to connect
 When a new connection arrives, the parent calls fork() to

create a child process
 The child process handles that new connection and exit()’s

when the connection terminates

 Remember that children become “zombies” after death
 Option A: Parent calls wait() to “reap” children
 Option B: Use a double-fork trick

11

CSE333, Winter 2020L25: Concurrency and Processes

Double-fork Trick

12

server

CSE333, Winter 2020L25: Concurrency and Processes

Double-fork Trick

13

client

server accept()

CSE333, Winter 2020L25: Concurrency and Processes

Double-fork Trick

14

client

server

server
fork() child

CSE333, Winter 2020L25: Concurrency and Processes

Double-fork Trick

15

client server

server

server
fork() grandchild

CSE333, Winter 2020L25: Concurrency and Processes

Double-fork Trick

16

client server

server

child exit()’s / parent wait()’s

CSE333, Winter 2020L25: Concurrency and Processes

Double-fork Trick

17

client server

server parent closes its
client connection

CSE333, Winter 2020L25: Concurrency and Processes

Double-fork Trick

18

client server

server

CSE333, Winter 2020L25: Concurrency and Processes

Double-fork Trick

19

client server

server

server

server

client

fork() grandchild
exit()

fork() child

CSE333, Winter 2020L25: Concurrency and Processes

Double-fork Trick

20

client server

client server

server

CSE333, Winter 2020L25: Concurrency and Processes

Double-fork Trick

21

client server

client server

client server

client server

client server

client server
client server

client server

client server

server

CSE333, Winter 2020L25: Concurrency and Processes

Review Question

 What will happen when one of the grandchildren
processes finishes?
 Vote at http://PollEv.com/justinh

A. Zombie until grandparent exits
B. Zombie until grandparent reaps
C. Zombie until init reaps
D. ZOMBIE FOREVER!!!
E. We’re lost…

22

CSE333, Winter 2020L25: Concurrency and Processes

Concurrent with Processes Pseudocode
 See searchserver_processes/

23

... // Server set up
while (1) {

sock_fd = accept();
pid = fork();
if (pid == 0) {

// ??? process

} else {
// ??? process

}
}

CSE333, Winter 2020L25: Concurrency and Processes

Concurrent with Processes Pseudocode
 See searchserver_processes/

24

... // Server set up
while (1) {

sock_fd = accept();
pid = fork();
if (pid == 0) {

// Child process

} else {
// Parent process

}
}

CSE333, Winter 2020L25: Concurrency and Processes

Concurrent with Processes Pseudocode
 See searchserver_processes/

25

... // Server set up
while (1) {

sock_fd = accept();
pid = fork();
if (pid == 0) {

// Child process
pid = fork();
if (pid == 0) {

// ??? process

}

} else {
// Parent process

}
}

CSE333, Winter 2020L25: Concurrency and Processes

Concurrent with Processes Pseudocode
 See searchserver_processes/

26

... // Server set up
while (1) {

sock_fd = accept();
pid = fork();
if (pid == 0) {

// Child process
pid = fork();
if (pid == 0) {

// Grand-child process
HandleClient(sock_fd, ...);

}

} else {
// Parent process

}
}

CSE333, Winter 2020L25: Concurrency and Processes

Concurrent with Processes Pseudocode
 See searchserver_processes/

27

... // Server set up
while (1) {

sock_fd = accept();
pid = fork();
if (pid == 0) {

// Child process
pid = fork();
if (pid == 0) {

// Grand-child process
HandleClient(sock_fd, ...);

}
// Clean up resources...
exit();

} else {
// Parent process

}
}

CSE333, Winter 2020L25: Concurrency and Processes

Concurrent with Processes Pseudocode
 See searchserver_processes/

28

... // Server set up
while (1) {

sock_fd = accept();
pid = fork();
if (pid == 0) {

// Child process
pid = fork();
if (pid == 0) {

// Grand-child process
HandleClient(sock_fd, ...);

}
// Clean up resources...
exit();

} else {
// Parent process
// Wait for child to immediately die
wait();
close(sock_fd);

}
}

CSE333, Winter 2020L25: Concurrency and Processes

Why Concurrent Processes?

 Advantages:
 Almost as simple to code as sequential

• In fact, most of the code is identical!

 Concurrent execution leads to better CPU, network utilization

 Disadvantages:
 Processes are heavyweight

• Relatively slow to fork
• Context switching latency is high

 Communication between processes is complicated

30

CSE333, Winter 2020L25: Concurrency and Processes

How Fast is fork()?

 See forklatency.cc

 ~ 0.5 milliseconds per fork*
 maximum of (1000/0.5) = 2,000 connections/sec/core
 ~175 million connections/day/core

• This is fine for most servers
• Too slow for super-high-traffic front-line web services

– Facebook served ~ 750 billion page views per day in 2013!
Would need 3-6k cores just to handle fork(), i.e. without doing any work
for each connection

 *Past measurements are not indicative of future performance – depends on hardware, OS,
software versions, …

 Tested on attu (3/2/2020)

31

CSE333, Winter 2020L25: Concurrency and Processes

How Fast is pthread_create()?

 See threadlatency.cc

 0.05 milliseconds per thread creation*
 10x faster than fork()
 maximum of (1000/0.05) = 20,000 connections/sec/core
 2 billion connections/day/core

 Mush faster, but writing safe multithreaded code can be
serious voodoo

 *Past measurements are not indicative of future performance – depends on hardware, OS,
software versions, …, but will typically be an order of magnitude faster than fork()

 Tested on attu (3/2/2020)

32

CSE333, Winter 2020L25: Concurrency and Processes

Aside: Thread Pools

 In real servers, we’d like to avoid overhead needed to
create a new thread or process for every request
 We wrote a Thread Pool implementation for you in HW4

 Idea: Thread Pools:
 Create a fixed set of worker threads when the server starts
 When a request arrives, add it to a queue of tasks (using locks)
 Each thread tries to remove a task from the queue (using locks)
 When a thread is finished with one task, it tries to get a new task

from the queue (using locks)

33

