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Administrivia

«» Classes have moved online to avoid virus transmission

= Stay healthy everyone!

+ Final Exam is cancelled
" Grade weights will be updated, more info coming soon

+ Lectures posted online through Panopto on Canvas
+ Section will be online through Zoom
+» Office Hours are online through Zoom

+» hw4 due Thursday (3/12)

= Submissions accepted through Sunday, as usual

» Course evaluations! (see Piazza)

/
*
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Outline

% Searchserver
= Sequential
" Concurrent via forking threads — pthread create ()
= Concurrent via forking processes — fork ()
" Concurrent via non-blocking, event-driven /0O — ()

« We won’t get to this ®

« Reference: Computer Systems: A Programmer’s
Perspective, Chapter 12 (CSE 351 book)
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Review: Address Spaces

OxFF...FF

+ A process executes within an
address space SP

" |ncludes segments for different parts
of memory

" Process tracks its current state using
the stack pointer (SP) and program
counter (PC)

0x00...00
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Creating New Processes

+ [pid t fork();

" Creates a new process (the “child”) that is an exact clone* of the
current process (the “parent”)

- *Everything is cloned except threads

" The new process has a separate virtual address space from the
parent
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Main Uses of fork ()

= Fork a child to handle some work
- Server forks to handle a new connection
- Web browser forks to render a new website
— Mainly for security purposes (separate address spaces)
" Fork a child that then exec’s a new program
- Shell forks and execs the program you want to run

- 333 grading script forks and execs your executable

— Using Python subprocess

CSE333, Winter 2020
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fork () and Address Spaces

+ Fork cause the OS to
clone the SP
address space

= The copies of the
memory segments are
(nearly) identical

" The new process has
copies of the parent’s
data, stack-allocated
variables, open file
descriptors, etc.

PARENT

fork ()

CSE333, Winter 2020
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fork ()

« fork () has peculiar semantics
" The parent invokes fork ()
" The OS clones the parent

" Both the parent and the child return
from fork

- Parent receives child’s pid
« Child receives a 0

CSE333, Winter 2020
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fork ()

« fork () has peculiar semantics
" The parent invokes fork ()
" The OS clones the parent

" Both the parent and the child return
from fork

- Parent receives child’s pid
« Child receives a 0

clone

CSE333, Winter 2020
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fork ()

« fork () has peculiar semantics
" The parent invokes fork ()
" The OS clones the parent

" Both the parent and the child return
from fork

- Parent receives child’s pid
« Child receives a 0

+ See fork example.cc

child pid

CSE333, Winter 2020
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Concurrent Server with Processes

+ The parent process blocks on accept (), waiting for a
new client to connect

" When a new connection arrives, the parent calls fork () to
create a child process

" The child process handles that new connection and exit ()’s
when the connection terminates

+» Remember that children become “zombies” after death
" Option A: Parentcallswait () to “reap” children
® Option B: Use a double-fork trick

11
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Double-fork Trick

12
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Double-fork Trick

Q
%
o
Cx
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Double-fork Trick

~

S, fork () child
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Double-fork Trick

S, fork () grandchild
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Double-fork Trick

childexit ()’s/parentwait ()’s
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Double-fork Trick

m parent closes its
client connection
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Double-fork Trick

N —
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Double-fork Trick
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T~ ~ fork () grandchild

«—--" ©exit()
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Double-fork Trick
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Double-fork Trick

21
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Review Question

+ What will happen when one of the grandchildren
processes finishes?

= \/ote at http://PollEv.com/justinh

Zombie until grandparent reaps
Zombie until init reaps
. ZOMBIE FOREVER!!!

We’re lost...

moo®p

CSE333, Winter 2020
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Concurrent with Processes Pseudocode

+ See searchserver processes/

7

// Server set up
while (1) {
sock fd = accept();
pid = fork();
if (pid == 0) {
// 2?72 process

} else {
// 2?72 process

CSE333, Winter 2020
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Concurrent with Processes Pseudocode

+ See searchserver processes/

7

// Server set up
while (1) {

sock fd = accept();

pid = fork();
if (pid == 0) {
// Child process

} else {
// Parent process
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Concurrent with Processes Pseudocode

+ See searchserver processes/

7

// Server set up
while (1) {

sock fd = accept();

pid = fork();
if (pid == 0) {
// Child process
pid = fork();
if (pid == 0) {
// 2?72 process

} else {
// Parent process
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Concurrent with Processes Pseudocode

+ See searchserver processes/

7

// Server set up
while (1) {
sock fd = accept();
pid = fork();
if (pid == 0) {
// Child process
pid = fork();
if (pid == 0)
// Grand-child process
HandleClient (sock fd,
}

} else {
// Parent process
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Concurrent with Processes Pseudocode

+ See searchserver processes/

(... // Server set up
while (1) {
sock fd = accept();
pid = fork();
if (pid == 0) {
// Child process
pid = fork();
if (pid == 0)
// Grand-child process
HandleClient (sock fd, ...);
}

// Clean up resources...
ex1it ()

} else {
// Parent process
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Concurrent with Processes Pseudocode

+ See searchserver processes/

[ // Server set up

CSE333, Winter 2020

while

pid
if

(1)

sock fd

{

= accept ()

= fork();

(pid

pid =

== 0) {

// Child process

fork () ;

if (pid == 0)
// Grand-child process
HandleClient (sock fd, ...);

}

// Clean up resources...

ex1it ()

} else {

// Parent process

// Wait for child to immediately die

wait () ;

close (sock fd);

28
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Why Concurrent Processes?

+~ Advantages:

= Almost as simple to code as sequential
- In fact, most of the code is identical!

= Concurrent execution leads to better CPU, network utilization

+» Disadvantages:

" Processes are heavyweight
- Relatively slow to fork
- Context switching latency is high

= Communication between processes is complicated

30
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How Fast is fork () ?

+ See forklatency.cc

+» ~ 0.5 milliseconds per fork*
= . maximum of (1000/0.5) = 2,000 connections/sec/core

= ~175 million connections/day/core
« This is fine for most servers

- Too slow for super-high-traffic front-line web services

— Facebook served ~ 750 billion page views per day in 2013!
Would need 3-6k cores just to handle fork (), i.e. without doing any work
for each connection

*Past measurements are not indicative of future performance — depends on hardware, OS,
software versions, ...

Tested on attu (3/2/2020)
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How Fast is pthread create()?

+» See threadlatency.cc

+» ~0.05 milliseconds per thread creation*

®= ~10x faster than fork ()

= . maximum of (1000/0.05) = 20,000 connections/sec/core
= ~2 billion connections/day/core

Mush faster, but writing safe multithreaded code can be
serious voodoo

*Past measurements are not indicative of future performance — depends on hardware, OS,
software versions, ..., but will typically be an order of magnitude faster than fork()

Tested on attu (3/2/2020)
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Aside: Thread Pools

+ In real servers, we’d like to avoid overhead needed to
create a new thread or process for every request

" We wrote a Thread Pool implementation for you in HW4

+ |dea: Thread Pools:
= Create a fixed set of worker threads when the server starts
" When a request arrives, add it to a queue of tasks (using locks)
" Each thread tries to remove a task from the queue (using locks)

" When a thread is finished with one task, it tries to get a new task
from the queue (using locks)
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