#### **Concurrency: Intro and Threads** CSE 333 Winter 2020

**Guest Instructor:** Travis McGaha

#### **Teaching Assistants:**

Andrew Hu Cheng Ni Guramrit Singh Rehaan Bhimani Zachary Keyes Austin Chan Cosmo Wang Mengqi Cen Renshu Gu Brennan Stein Diya Joy Pat Kosakanchit Travis McGaha

# Administrivia

- HW4 due two Thursdays from now (03/12)
  - You can use *two* late days on HW4.

- Exercise 17 to be released Friday.
  - Due Monday 3/09 @ 11 am
  - The Last Exercise

#### Some Common HW4 Bugs

- Your server works, but is really, really slow
  - Check the 2<sup>nd</sup> argument to the QueryProcessor constructor
- Funny things happen after the first request
  - Make sure you're not destroying the HTTPConnection object too early (e.g. falling out of scope in a while loop)
- Server crashes on a blank request
  - Make sure that you handle the case that read() (or WrappedRead()) returns 0

#### **Lecture Outline**

- **\*** From Query Processing to a Search Server
- Intro to Concurrency
- Threads and other concurrency methods
- Search Server with pthreads

# **Building a Web Search Engine**

- We have:
  - A web index
    - A map from <word> to <list of documents containing the word>
    - This is probably *sharded* over multiple files
  - A query processor
    - Accepts a query composed of multiple words
    - Looks up each word in the index
    - Merges the result from each word into an overall result set

#### **Search Engine Architecture**



# Search Engine (Pseudocode)

```
doclist Lookup(string word) {
  bucket = hash(word);
  hitlist = file.read(bucket);
  foreach hit in hitlist {
    doclist.append(file.read(hit));
  return doclist;
}
main()
      {
  SetupServerToReceiveConnections();
  while (1) {
    string query words[] = GetNextQuery();
    results = Lookup(query words[0]);
    foreach word in query[1..n] {
      results = results.intersect(Lookup(word));
    Display(results);
```

#### **Execution Timeline: a Multi-Word Query**



#### What About I/O-caused Latency?

Jeff Dean's "Numbers Everyone Should Know" (LADIS '09)

| Numbers Everyone Sho                | uld Know         |
|-------------------------------------|------------------|
| L1 cache reference                  | 0.5 ns           |
| Branch mispredict                   | 5 ns             |
| L2 cache reference                  | 7 ns             |
| Mutex lock/unlock                   | 100 ns           |
| Main memory reference               | 100 ns           |
| Compress 1K bytes with Zippy        | 10,000 ns        |
| Send 2K bytes over 1 Gbps network   | 20,000 ns        |
| Read 1 MB sequentially from memory  | 250,000 ns       |
| Round trip within same datacenter   | 500,000 ns       |
| Disk seek                           | 10,000,000 ns    |
| Read 1 MB sequentially from network | 10,000,000 ns    |
| Read 1 MB sequentially from disk    | 30,000,000 ns    |
| Send packet CA->Netherlands->CA     | 150,000,000 ns + |
|                                     | Google -         |

#### **Execution Timeline: To Scale**



# **Multiple (Single-Word) Queries**



#### **Multiple Queries: To Scale**



# Uh-Oh (1 of 2)



# Uh-Oh (2 of 2)



### **Sequential Can Be Inefficient**

- Only one query is being processed at a time
  - All other queries queue up behind the first one
  - And clients queue up behind the queries ...
- Even while processing one query, the CPU is idle the vast majority of the time
  - It is *blocked* waiting for I/O to complete
    - Disk I/O can be very, very slow (10 million times slower ...)
- At most one I/O operation is in flight at a time
  - Missed opportunities to speed I/O up
    - Separate devices in parallel, better scheduling of a single device, etc.

#### **Lecture Outline**

- From Query Processing to a Search Server
- Intro to Concurrency
- Concurrent Programming Styles
- Threads
- Search Server with pthreads

#### Concurrency

- Our search engine could run concurrently:
  - <u>Example</u>: Execute queries one at a time, but issue *I/O requests* against different files/disks simultaneously
    - Could read from several index files at once, processing the I/O results as they arrive
  - <u>Example</u>: Our web server could execute multiple *queries* at the same time
    - While one is waiting for I/O, another can be executing on the CPU
- Concurrency != parallelism
  - Concurrency is doing multiple tasks at a time
  - Parallelism is executing multiple CPU instructions *simultaneously*

#### **A Concurrent Implementation**

- Se multiple "workers"
  - As a query arrives, create a new "worker" to handle it
    - The "worker" reads the query from the network, issues read requests against files, assembles results and writes to the network
    - The "worker" uses blocking I/O; the "worker" alternates between consuming CPU cycles and blocking on I/O
  - The OS context switches between "workers"
    - While one is blocked on I/O, another can use the CPU
    - Multiple "workers'" I/O requests can be issued at once
- So what should we use for our "workers"?

#### **Lecture Outline**

- From Query Processing to a Search Server
- Intro to Concurrency
- **\*** Threads and other concurrency methods
- Search Server with pthreads

#### **Review: Processes**

- The components of a "process" are:
  - Resources such as file descriptors and sockets
  - An address space (page tables, ect.)
- Different Processes have independent components:
  - Most importantly: Isolated address spaces.
- An address space of a process can hold stack(s) that distinguish different "threads" of execution

#### **Introducing Threads**

- Separate the concept of a process from the "thread of execution"
  - Threads are contained within a process
  - Usually called a thread, this is a sequential execution stream within a process



- In most modern OS's:
  - Threads are the *unit of scheduling*.

#### Multi-threaded Search Engine (Pseudocode)

```
main() {
  while (1) {
    string query words[] = GetNextQuery();
   ^CreateThread(ProcessQuery(query words));
doclist Lookup(string word) {
 bucket = hash(word);
 hitlist = file.read(bucket);
  foreach hit in hitlist
    doclist.append(file.read(hit));
  return doclist;
ProcessQuery(string query words[]) {
  results = Lookup(query words[0]);
  foreach word in query[1..n]
    results = results.intersect(Lookup(word));
 Display(results);
```

# Multi-threaded Search Engine (Execution)



time

# Why Threads?

- Advantages:
  - You (mostly) write sequential-looking code
  - Threads can run in parallel if you have multiple CPUs/cores
- Disadvantages:
  - If threads share data, you need locks or other synchronization
    - Very bug-prone and difficult to debug
  - Threads can introduce overhead
    - Lock contention, context switch overhead, and other issues
  - Need language support for threads

#### **Threads vs. Processes**

- In most modern OS's:
  - A <u>Process</u> has a unique: address space, OS resources, & security attributes
  - A <u>Thread</u> has a unique: stack, stack pointer, program counter, & registers
  - Threads are the *unit of scheduling* and processes are their containers; every process has at least one thread running in it

#### **Threads vs. Processes**



#### **Threads vs. Processes**



#### **Alternative: Processes**

- What if we forked processes instead of threads?
- Advantages:
  - No shared memory between processes
  - No need for language support; OS provides "fork"
  - Processes are isolated. If one crashes, other processes keep going
- Disadvantages:
  - More overhead than threads during creation and context switching
  - Cannot easily share memory between processes typically communicate through the file system

# **Alternate: Different I/O Handling**

- Use asynchronous or non-blocking I/O
- Your program begins processing a query
  - When your program needs to read data to make further progress, it registers interest in the data with the OS and then switches to a different query
  - The OS handles the details of issuing the read on the disk, or waiting for data from the console (or other devices, like the network)
  - When data becomes available, the OS lets your program know
- Your program (almost never) blocks on I/O

# Non-blocking I/O

- Reading from the network can truly *block* your program
  - Remote computer may wait arbitrarily long before sending data
- Non-blocking I/O (network, console)
  - Your program enables non-blocking I/O on its file descriptors
  - Your program issues read() and write() system calls
    - If the read/write would block, the system call returns immediately
  - Program can ask the OS which file descriptors are readable/writeable
    - Program can choose to block while no file descriptors are ready

# **Outline (next two lectures)**

- We'll look at different searchserver implementations
  - Sequential
  - Concurrent via dispatching threads pthread\_create()
  - Concurrent via forking processes fork ()
    - 🏂 Lecture With Andrew Hu! 🏂

 Reference: Computer Systems: A Programmer's Perspective, Chapter 12 (CSE 351 book)

#### Sequential

Pseudocode:

```
listen_fd = Listen(port);
while (1) {
    client_fd = accept(listen_fd);
    buf = read(client_fd);
    resp = ProcessQuery(buf);
    write(client_fd, resp);
    close(client_fd);
}
```

\* See searchserver sequential/

# Why Sequential?

- Advantages:
  - Super(?) simple to build/write
- Disadvantages:
  - Incredibly poor performance
    - One slow client will cause *all* others to block
    - Poor utilization of resources (CPU, network, disk)

#### Threads

- Threads are like lightweight processes
  - They execute concurrently like processes
    - Multiple threads can run simultaneously on multiple CPUs/cores
  - Unlike processes, threads cohabitate the same address space
    - Threads within a process see the same heap and globals and can communicate with each other through variables and memory
      - But, they can interfere with each other need synchronization for shared resources
    - Each thread has its own stack

#### **Single-Threaded Address Spaces**



- Before creating a thread
  - One thread of execution running in the address space
    - One PC, stack, SP
  - That main thread invokes a function to create a new thread
    - Typically pthread\_create()

#### **Multi-threaded Address Spaces**



After creating a thread

- Two threads of execution running in the address space
  - Original thread (parent) and new thread (child)
  - New stack created for child thread
  - Child thread has its own values of the PC and SP
- Both threads share the other segments (code, heap, globals)
  - They can cooperatively modify shared data

#### **Lecture Outline**

- From Query Processing to a Search Server
- Intro to Concurrency
- Threads
- \* Search Server with pthreads

### **POSIX Threads (pthreads)**

- The POSIX APIs for dealing with threads
  - Declared in pthread.h
    - Not part of the C/C++ language (cf. Java)
  - To enable support for multithreading, must include -pthread flag when compiling and linking with gcc command
    - gcc -g -Wall -std=c11 -pthread -o main main.c

#### **Creating and Terminating Threads**

| * | int pthread_create(                       |
|---|-------------------------------------------|
|   | <pre>pthread_t* thread,</pre>             |
|   | <pre>const pthread_attr_t* attr,</pre>    |
|   | <pre>void* (*start_routine)(void*),</pre> |
|   | <pre>void* arg);</pre>                    |

- Creates a new thread into \*thread, with attributes \*attr (NULL means default attributes)
- Returns 0 on success and an error number on error (can check against error constants)
- The new thread runs start\_routine (arg)

```
void pthread_exit(void* retval);
```

- Equivalent of exit (retval); for a thread instead of a process
- The thread will automatically exit once it returns from start\_routine()