
CSE333, Winter 2020L23: Intro to Concurrency

Guest Instructor: Travis McGaha

Teaching Assistants:

Andrew Hu Austin Chan Brennan Stein

Cheng Ni Cosmo Wang Diya Joy

Guramrit Singh Mengqi Cen Pat Kosakanchit

Rehaan Bhimani Renshu Gu Travis McGaha

Zachary Keyes

Concurrency: Intro and Threads
CSE 333 Winter 2020

CSE333, Winter 2020L23: Intro to Concurrency

Administrivia

❖ HW4 due two Thursdays from now (03/12)

▪ You can use two late days on HW4.

❖ Exercise 17 to be released Friday.

▪ Due Monday 3/09 @ 11 am

▪ 🎉 The Last Exercise 🎉

2

CSE333, Winter 2020L23: Intro to Concurrency

Some Common HW4 Bugs

❖ Your server works, but is really, really slow
▪ Check the 2nd argument to the QueryProcessor constructor

❖ Funny things happen after the first request
▪ Make sure you’re not destroying the HTTPConnection object

too early (e.g. falling out of scope in a while loop)

❖ Server crashes on a blank request
▪ Make sure that you handle the case that read() (or
WrappedRead()) returns 0

3

CSE333, Winter 2020L23: Intro to Concurrency

Lecture Outline

❖ From Query Processing to a Search Server

❖ Intro to Concurrency

❖ Threads and other concurrency methods

❖ Search Server with pthreads

4

CSE333, Winter 2020L23: Intro to Concurrency

Building a Web Search Engine

❖ We have:

▪ A web index

• A map from <word> to <list of documents containing the word>

• This is probably sharded over multiple files

▪ A query processor

• Accepts a query composed of multiple words

• Looks up each word in the index

• Merges the result from each word into an overall result set

5

CSE333, Winter 2020L23: Intro to Concurrency

Search Engine Architecture

6

query
processor

client
index

file

index
file

index
file

CSE333, Winter 2020L23: Intro to Concurrency

Search Engine (Pseudocode)

7

doclist Lookup(string word) {

bucket = hash(word);

hitlist = file.read(bucket);

foreach hit in hitlist {

doclist.append(file.read(hit));

}

return doclist;

}

main() {

SetupServerToReceiveConnections();

while (1) {

string query_words[] = GetNextQuery();

results = Lookup(query_words[0]);

foreach word in query[1..n] {

results = results.intersect(Lookup(word));

}

Display(results);

}

}

CSE333, Winter 2020L23: Intro to Concurrency

Execution Timeline: a Multi-Word Query

8

n
e
t
w
o
r
k

I
/
O

m
a
i
n
(
)

G
e
t
N
e
x
t
Q
u
e
r
y
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

n
e
t
w
o
r
k

I
/
O

D
i
s
p
l
a
y
(
)

G
e
t
N
e
x
t
Q
u
e
r
y
(
)

• • •

time

query

C
P
U

C
P
U

r
e
s
u
l
t
s
.
i
n
t
e
r
s
e
c
t
(
)

r
e
s
u
l
t
s
.
i
n
t
e
r
s
e
c
t
(
)

CSE333, Winter 2020L23: Intro to Concurrency

What About I/O-caused Latency?

❖ Jeff Dean’s “Numbers Everyone Should Know” (LADIS ‘09)

9

CSE333, Winter 2020L23: Intro to Concurrency

Execution Timeline: To Scale

10

n
e
t
w
o
r
k

I
/
O

m
a
i
n
(
)

d
i
s
k

I
/
O

d
i
s
k

I
/
O

d
i
s
k

I
/
O

• • •

time

query

n
e
t
w
o
r
k

I
/
O

C
P
U

C
P
U

CSE333, Winter 2020L23: Intro to Concurrency

Multiple (Single-Word) Queries

11

C
P
U

1
.
a

I
/
O

1
.
b

C
P
U

1
.
c

I
/
O

1
.
d

C
P
U

1
.
e C
P
U

2
.
a

I
/
O

2
.
b

C
P
U

2
.
c

I
/
O

2
.
d

C
P
U

2
.
e C
P
U

3
.
a

I
/
O

3
.
b

C
P
U

3
.
c

I
/
O

3
.
d

C
P
U

3
.
e

time

query 2

query 3

query 1

is the Query Number
#.a -> GetNextQuery()
#.b -> network I/O
#.c -> Lookup() & file.read()
#.d -> Disk I/O
#.e -> Intersect()

& Display()

CSE333, Winter 2020L23: Intro to Concurrency

Multiple Queries: To Scale

12

I
/
O

1
.
b

I
/
O

1
.
d

time

query 2

query 1

I
/
O

1
.
b

I
/
O

1
.
d

I
/
O

1
.
b

I
/
O

1
.
d

query 3

CSE333, Winter 2020L23: Intro to Concurrency

Uh-Oh (1 of 2)

13

query
processor

client

client

client

client

client

index
file

index
file

index
file

CSE333, Winter 2020L23: Intro to Concurrency

Uh-Oh (2 of 2)

14

C
P
U

1
.
a

I
/
O

1
.
b

C
P
U

1
.
c

I
/
O

1
.
d

C
P
U

1
.
e C
P
U

2
.
a

I
/
O

2
.
b

C
P
U

2
.
c

I
/
O

2
.
d

C
P
U

2
.
e C
P
U

3
.
a

I
/
O

3
.
b

C
P
U

3
.
c

I
/
O

3
.
d

C
P
U

3
.
e

time

query 2

query 3

query 1

The CPU is idle most
of the time!

(picture not to scale)

Only one I/O request at
a time is “in flight”

Queries don’t run until
earlier queries finish

CSE333, Winter 2020L23: Intro to Concurrency

Sequential Can Be Inefficient

❖ Only one query is being processed at a time

▪ All other queries queue up behind the first one

▪ And clients queue up behind the queries …

❖ Even while processing one query, the CPU is idle the vast
majority of the time

▪ It is blocked waiting for I/O to complete

• Disk I/O can be very, very slow (10 million times slower …)

❖ At most one I/O operation is in flight at a time

▪ Missed opportunities to speed I/O up

• Separate devices in parallel, better scheduling of a single device, etc.

15

CSE333, Winter 2020L23: Intro to Concurrency

Lecture Outline

❖ From Query Processing to a Search Server

❖ Intro to Concurrency

❖ Concurrent Programming Styles

❖ Threads

❖ Search Server with pthreads

16

CSE333, Winter 2020L23: Intro to Concurrency

Concurrency

❖ Our search engine could run concurrently:

▪ Example: Execute queries one at a time, but issue I/O requests
against different files/disks simultaneously

• Could read from several index files at once, processing the I/O results
as they arrive

▪ Example: Our web server could execute multiple queries at the
same time

• While one is waiting for I/O, another can be executing on the CPU

❖ Concurrency != parallelism

▪ Concurrency is doing multiple tasks at a time

▪ Parallelism is executing multiple CPU instructions simultaneously

17

CSE333, Winter 2020L23: Intro to Concurrency

A Concurrent Implementation

❖ Use multiple “workers”

▪ As a query arrives, create a new “worker” to handle it

• The “worker” reads the query from the network, issues read requests
against files, assembles results and writes to the network

• The “worker” uses blocking I/O; the “worker” alternates between
consuming CPU cycles and blocking on I/O

▪ The OS context switches between “workers”

• While one is blocked on I/O, another can use the CPU

• Multiple “workers’” I/O requests can be issued at once

❖ So what should we use for our “workers”?

18

CSE333, Winter 2020L23: Intro to Concurrency

Lecture Outline

❖ From Query Processing to a Search Server

❖ Intro to Concurrency

❖ Threads and other concurrency methods

❖ Search Server with pthreads

19

CSE333, Winter 2020L23: Intro to Concurrency

Review: Processes

❖ The components of a “process” are:

▪ Resources such as file descriptors and sockets

▪ An address space (page tables, ect.)

❖ Different Processes have independent components:

▪ Most importantly: Isolated address spaces.

❖ An address space of a process can hold stack(s) that
distinguish different “threads” of execution

20

CSE333, Winter 2020L23: Intro to Concurrency

Introducing Threads

❖ Separate the concept of a process from the “thread of
execution”

▪ Threads are contained within a process

▪ Usually called a thread, this is a sequential execution stream
within a process

❖ In most modern OS’s:

▪ Threads are the unit of scheduling.

21

thread

CSE333, Winter 2020L23: Intro to Concurrency

Multi-threaded Search Engine (Pseudocode)

22

doclist Lookup(string word) {

bucket = hash(word);

hitlist = file.read(bucket);

foreach hit in hitlist

doclist.append(file.read(hit));

return doclist;

}

ProcessQuery(string query_words[]) {

results = Lookup(query_words[0]);

foreach word in query[1..n]

results = results.intersect(Lookup(word));

Display(results);

}

main() {

while (1) {

string query_words[] = GetNextQuery();

CreateThread(ProcessQuery(query_words));

}

}

CSE333, Winter 2020L23: Intro to Concurrency

Multi-threaded Search Engine (Execution)

23

C
P
U

1
.
a

I
/
O

1
.
b

C
P
U

1
.
c

I
/
O

1
.
d

C
P
U

1
.
e

C
P
U

2
.
a

I
/
O

2
.
b

C
P
U

3
.
a

I
/
O

3
.
b

C
P
U

3
.
c

I
/
O

3
.
d

C
P
U

3
.
e

time

query 2

query 3

query 1

C
P
U

2
.
c

I
/
O

2
.
d

C
P
U

2
.
e

CSE333, Winter 2020L23: Intro to Concurrency

Why Threads?

❖ Advantages:

▪ You (mostly) write sequential-looking code

▪ Threads can run in parallel if you have multiple CPUs/cores

❖ Disadvantages:

▪ If threads share data, you need locks or other synchronization

• Very bug-prone and difficult to debug

▪ Threads can introduce overhead

• Lock contention, context switch overhead, and other issues

▪ Need language support for threads

24

CSE333, Winter 2020L23: Intro to Concurrency

Threads vs. Processes

❖ In most modern OS’s:

▪ A Process has a unique: address space, OS resources,
& security attributes

▪ A Thread has a unique: stack, stack pointer, program counter,
& registers

▪ Threads are the unit of scheduling and processes are their
containers; every process has at least one thread running in it

25

CSE333, Winter 2020L23: Intro to Concurrency

Threads vs. Processes

26

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

pthread_create()

Stackchild

CSE333, Winter 2020L23: Intro to Concurrency

Threads vs. Processes

27

OS kernel [protected]

Stackchild

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()

CSE333, Winter 2020L23: Intro to Concurrency

Alternative: Processes

❖ What if we forked processes instead of threads?

❖ Advantages:

▪ No shared memory between processes

▪ No need for language support; OS provides “fork”

▪ Processes are isolated. If one crashes, other processes keep going

❖ Disadvantages:

▪ More overhead than threads during creation and context
switching

▪ Cannot easily share memory between processes – typically
communicate through the file system

28

CSE333, Winter 2020L23: Intro to Concurrency

Alternate: Different I/O Handling

❖ Use asynchronous or non-blocking I/O

❖ Your program begins processing a query

▪ When your program needs to read data to make further progress,
it registers interest in the data with the OS and then switches to a
different query

▪ The OS handles the details of issuing the read on the disk, or
waiting for data from the console (or other devices, like the
network)

▪ When data becomes available, the OS lets your program know

❖ Your program (almost never) blocks on I/O

29

CSE333, Winter 2020L23: Intro to Concurrency

Non-blocking I/O

❖ Reading from the network can truly block your program

▪ Remote computer may wait arbitrarily long before sending data

❖ Non-blocking I/O (network, console)

▪ Your program enables non-blocking I/O on its file descriptors

▪ Your program issues read() and write() system calls

• If the read/write would block, the system call returns immediately

▪ Program can ask the OS which file descriptors are
readable/writeable

• Program can choose to block while no file descriptors are ready

30

CSE333, Winter 2020L23: Intro to Concurrency

Outline (next two lectures)

❖ We’ll look at different searchserver implementations

▪ Sequential

▪ Concurrent via dispatching threads – pthread_create()

▪ Concurrent via forking processes – fork()

• 🎉Lecture With Andrew Hu!🎉

❖ Reference: Computer Systems: A Programmer’s
Perspective, Chapter 12 (CSE 351 book)

31

CSE333, Winter 2020L23: Intro to Concurrency

Sequential

❖ Pseudocode:

❖ See searchserver_sequential/

32

listen_fd = Listen(port);

while (1) {

client_fd = accept(listen_fd);

buf = read(client_fd);

resp = ProcessQuery(buf);

write(client_fd, resp);

close(client_fd);

}

CSE333, Winter 2020L23: Intro to Concurrency

Why Sequential?

❖ Advantages:

▪ Super(?) simple to build/write

❖ Disadvantages:

▪ Incredibly poor performance

• One slow client will cause all others to block

• Poor utilization of resources (CPU, network, disk)

33

CSE333, Winter 2020L23: Intro to Concurrency

Threads

❖ Threads are like lightweight processes

▪ They execute concurrently like processes

• Multiple threads can run simultaneously on multiple CPUs/cores

▪ Unlike processes, threads cohabitate the same address space

• Threads within a process see the same heap and globals and can
communicate with each other through variables and memory

– But, they can interfere with each other – need synchronization for shared
resources

• Each thread has its own stack

34

CSE333, Winter 2020L23: Intro to Concurrency

Single-Threaded Address Spaces

❖ Before creating a thread

▪ One thread of execution running
in the address space

• One PC, stack, SP

▪ That main thread invokes a
function to create a new thread

• Typically pthread_create()

35

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent

CSE333, Winter 2020L23: Intro to Concurrency

Multi-threaded Address Spaces

❖ After creating a thread

▪ Two threads of execution running
in the address space

• Original thread (parent) and new
thread (child)

• New stack created for child thread

• Child thread has its own values of
the PC and SP

▪ Both threads share the other
segments (code, heap, globals)

• They can cooperatively modify
shared data

36

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent

Stackchild
SPchild

PCchild

CSE333, Winter 2020L23: Intro to Concurrency

Lecture Outline

❖ From Query Processing to a Search Server

❖ Intro to Concurrency

❖ Threads

❖ Search Server with pthreads

37

CSE333, Winter 2020L23: Intro to Concurrency

POSIX Threads (pthreads)

❖ The POSIX APIs for dealing with threads
▪ Declared in pthread.h

• Not part of the C/C++ language (cf. Java)

▪ To enable support for multithreading, must include -pthread
flag when compiling and linking with gcc command

• gcc –g –Wall –std=c11 –pthread –o main main.c

38

CSE333, Winter 2020L23: Intro to Concurrency

Creating and Terminating Threads

❖

▪ Creates a new thread into *thread, with attributes *attr
(NULL means default attributes)

▪ Returns 0 on success and an error number on error (can check
against error constants)

▪ The new thread runs start_routine(arg)

❖

▪ Equivalent of exit(retval); for a thread instead of a process

▪ The thread will automatically exit once it returns from
start_routine()

39

int pthread_create(

pthread_t* thread,

const pthread_attr_t* attr,

void* (*start_routine)(void*),

void* arg);

void pthread_exit(void* retval);

