YA/ UNIVERSITY of WASHINGTON L21: Client-side & Server-side Networking

Client-side and Server-side

Networking
CSE 333 Winter 2020

Instructor: Justin Hsia

Teaching Assistants:

Andrew Hu Austin Chan
Cheng Ni Cosmo Wang
Guramrit Singh Mengqi Chen
Rehaan Bhimani Renshu Gu

Zachary Keyes

Brennan Stein
Diya Joy

Pat Kosakanchit
Travis McGaha

CSE333, Winter 2020

YA/ UNIVERSITY of WASHINGTON L21: Client-side & Server-side Networking

Administrivia

+» Exercise 15 released yesterday, due Monday (3/2)
" Client-side programming

+» Exercise 16 released today, due Wednesday (3/4)

= Server-side programming

+» hw4 posted and files will be pushed to repos today
= Due last Thursday of quarter (3/12)

" Can still use 2 late days for hw4 (hard deadline of 3/15)
" Demo next lecture

CSE333, Winter 2020

w UNIVERSITY of WASHINGTON L21: Client-side & Server-side Networking CSE333, Winter 2020

Socket API: Client TCP Connection

+» There are five steps:
1) Figure out the IP address and port to connect to
2) Create a socket
3) Connect the socket to the remote server
4) read () andwrite () data using the socket

5) Close the socket

YA/ UNIVERSITY of WASHINGTON L21: Client-side & Server-side Networking

CSE333, Winter 2020

Step 2: Creating a Socket

4

L)

¢ | 1nt socket(int domain, int type,

int protocol);

" Creating a socket doesn’t bind it to a local address or port yet

= Returns file descriptor or -1 on error

socket.cc

7~

#include <arpa/inet.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <iostream>

int main(int argc, char** argv) {
1f (socket fd == -1) {

return EXIT FAILURE;
}

close (socket fd);
return EXIT SUCCESS;

int socket fd = socket (AF INET, SOCK STREAM, O0);

std::cerr << strerror (errno) << std::endl;

"

W UNIVERSITY of WASHINGTON L21: Client-side & Server-side Networking CSE333, Winter 2020

Step 3: Connect to the Server

+» The connect () system call establishes a connection to
a remote host

B | int connect(int sockfd, const struct sockaddr* addr,
socklen t addrlen);

- sockfd: Socket file description from Step 2

- addr and addrlen: Usually from one of the address structures
returned by getaddrinfo in Step 1 (DNS lookup)

« Returns 0 on success and —1 on error

+» connect () may take some time to return

" |tis a blocking call by default

" The network stack within the OS will communicate with the
remote host to establish a TCP connection to it

- This involves ~2 round trips across the network

W UNIVERSITY of WASHINGTON L21: Client-side & Server-side Networking

Connect Example

+ See connect.cc

CSE333, Winter 2020

[// Get an appropriate sockaddr structure.
struct sockaddr storage addr;

size t addrlen;

LookupName (argv[1l], port, &addr, &addrlen);

// Create the socket.
int socket fd = socket (addr.ss family, SOCK STREAM, O0);
1f (socket fd == -1) {
cerr << "socket () failed: " << strerror(errno) << endl;
return EXIT FAILURE;

}

// Connect the socket to the remote host.

int res = connect (socket fd,
reinterpret cast<sockaddr*>(&addr),
addrlen) ;

1f (res == -1) {

cerr << "connect () failed: " << strerror (errno) << endl;

YA/ UNIVERSITY of WASHINGTON L21: Client-side & Server-side Networking

Review Question

+» How do we error check read () andwrite ()?
= \/ote at http://PollEv.com/justinh

Return value less than expected

Return value of 0 or NULL

. Return value of -1

m O O W »

We’re lost...

CSE333, Winter 2020

CSE333, Winter 2020

YA/ UNIVERSITY of WASHINGTON L21: Client-side & Server-side Networking

Step 4: read ()

» If there is data that has already been received by the
network stack, then read will return immediately with it
" read () might return with /ess data than you asked for

» |f there is no data waiting for you, by default read ()
will block until something arrives
®" How might this cause deadlock?
" Can read () return0?

W UNIVERSITY of WASHINGTON L21: Client-side & Server-side Networking CSE333, Winter 2020

Step 4: write ()

» write () queues your data in a send buffer in the OS
and then returns

" The OS transmits the data over the network in the background

" Whenwrite () returns, the receiver probably has not yet
received the data!

+ If there is no more space left in the send buffer, by default
write () will block

Read/Write Example

« See sendreceive.cc

[while (1) ({
int wres = write(socket fd, readbuf, res);
1f (wres == 0) {
cerr << "socket closed prematurely" << endl;
close (socket fd);
return EXIT FAILURE;
}
1f (wres == -1) {
if (errno == EINTR)
continue;
cerr << "socket write failure: " << strerror (errno) << endl;
close (socket fd);
return EXIT FAILURE;
}

break;

W UNIVERSITY of WASHINGTON L21: Client-side & Server-side Networking CSE333, Winter 2020

10

W UNIVERSITY of WASHINGTON L21: Client-side & Server-side Networking CSE333, Winter 2020

Step 5: close ()

s [int close(1nt fd);]

= Nothing special here — it’s the same function as with file I/O

= Shuts down the socket and frees resources and file descriptors
associated with it on both ends of the connection

11

W UNIVERSITY of WASHINGTON L21: Client-side & Server-side Networking CSE333, Winter 2020

Socket API: Server TCP Connection

» Pretty similar to clients, but with additional steps:

1) Figure out the IP address and port on which to listen
2) Create a socket

3) bind () the socket to the address(es) and port

4) Tell the socket to 1isten () for incoming clients
5) accept () aclient connection

6) read () andwrite () to that connection

7) close () the client socket

12

W UNIVERSITY of WASHINGTON L21: Client-side & Server-side Networking CSE333, Winter 2020

Servers

+ Servers can have multiple IP addresses (“multihoming”)

= Usually have at least one externally-visible IP address, as well as a
local-only address (127.0.0.1)

+» The goals of a server socket are different than a client
socket

= Want to bind the socket to a particular port of one or more IP
addresses of the server

" Want to allow multiple clients to connect to the same port

- OS uses client IP address and port numbers to direct I/0 to the
correct server file descriptor

13

W UNIVERSITY of WASHINGTON L21: Client-side & Server-side Networking CSE333, Winter 2020

Step 1: Figure out IP address(es) & Port

+ Step 1: getaddrinfo () invocation may or may not be
needed (but we’ll use it)

= Do you know your IP address(es) already?
- Static vs. dynamic IP address allocation

- Even if the machine has a static IP address, don’t wire it into the code
— either look it up dynamically or use a configuration file

= Canrequest listen on all local IP addresses by passing NUL 1 as
hostname and setting AT PASSIVEinhints.ai flags

- Effectistouseaddress 0.0.0.0 (IPv4) or : : (IPv6)

14

W UNIVERSITY of WASHINGTON L21: Client-side & Server-side Networking CSE333, Winter 2020

Step 2: Create a Socket

+» Step 2: socket () call is same as before

" Can directly use constants or fields from result of
getaddrinfo ()

= Recall that this just returns a file descriptor — IP address and port
are not associated with socket yet

15

W UNIVERSITY of WASHINGTON L21: Client-side & Server-side Networking CSE333, Winter 2020

Step 3: Bind the socket

% | int bind(int sockfd, const struct sockaddr* addr,
socklen t addrlen);

" Looks nearly identical to connect () !
" Returns O on success, =1 on error

+» Some specifics for addr:
" Address family: AF" INET or AF INETG

- What type of IP connections can we accept?
- POSIX systems can handle IPv4 clients via IPv6 ©
" Port: portin network byte order (htons () is handy)

= Address: specify particular IP address or any |IP address
« “Wildcard address” — INADDR ANY (IPv4), in6addr any (IPv6)

16

W UNIVERSITY of WASHINGTON L21: Client-side & Server-side Networking CSE333, Winter 2020

Step 4: Listen for Incoming Clients

D)

L)

»|int listen(int sockfd, int backlog) ;

= Tells the OS that the socket is a listening socket that clients can
connect to

" backlog: maximum length of connection queue
- Gets truncated, if necessary, to defined constant SOMAXCONN

- The OS will refuse new connections once queue is full until server
accept ()s them (removing them from the queue)

" Returns O on success, =1 on error
" (Clients can start connecting to the socket as soonas 1listen ()

returns
- Server can’t use a connection until you accept () it

17

W UNIVERSITY of WASHINGTON L21: Client-side & Server-side Networking CSE333, Winter 2020

Example #1

+» See server bind listen.cc

" Takes in a port number from the command line

" Opens a server socket, prints info, then listens for connections for
20 seconds

- Can connect to it using netcat (nc)

18

W UNIVERSITY of WASHINGTON L21: Client-side & Server-side Networking CSE333, Winter 2020

Step 5: Accept a Client Connection

+ | int accept(int sockfd, struct sockaddr* addr,
socklen t* addrlen);

" Returns an active, ready-to-use socket file descriptor connected
to a client (or =1 on error)

- sockfd must have been created, bound, and listening
- Pulls a queued connection or waits for an incoming one
" addr and addrlen are output parameters

- *addrlen should initially be setto sizeof (*addr), gets
overwritten with the size of the client address

- Address information of client is written into *addr
— Use inet ntop () to get the client’s printable IP address
— Use getnameinfo () todo areverse DNS lookup on the client

19

W UNIVERSITY of WASHINGTON L21: Client-side & Server-side Networking CSE333, Winter 2020

Example #2

» See server_accept_rw_close.cc

" Takes in a port number from the command line

" Opens a server socket, prints info, then listens for connections
- Can connect to it using netcat (nc)

= Accepts connections as they come

= Echoes any data the client sends to it on stdout and also sends
it back to the client

20

W UNIVERSITY of WASHINGTON L21: Client-side & Server-side Networking CSE333, Winter 2020

Something to Note

+ Our server code is not concurrent

= Single thread of execution
®" The thread blocks while waiting for the next connection

®" The thread blocks waiting for the next message from the
connection

+» A crowd of clients is, by nature, concurrent

= While our server is handling the next client, all other clients are
stuck waiting for it ®

21

W UNIVERSITY of WASHINGTON L21: Client-side & Server-side Networking CSE333, Winter 2020

Extra Exercise #1

+» Write a program that:
= Reads DNS names, one per line, from stdin

" Translates each name to one or more IP addresses
" Prints out each IP address to stdout, one per line

22

w UNIVERSITY of WASHINGTON L21: Client-side & Server-side Networking CSE333, Winter 2020

Step 4: read ()

«» Assume we have:

" int socket fd; // fd of connected socket
" char readbuf[RUF]; // read buffer
" int res; // to store read result

«» Write C++ code to read in BUF characters from
socket fd

= If error occurs, send error message to user and exit ()

23

4

YA/ UNIVERSITY of WASHINGTON

Pseudocode Time

%~ Assume we have setup struct addrinfo
to get both IPv4 and IPv6 addresses

L21: Client-side & Server-side Networking CSE333, Winter 2020

hints

" Write pseudocode to bind to and listen

on the first socket that works

Pieces you can use:

Exrror(); // print msg and exit

retval getaddrinfo (..., &res);
freeaddrinfo (res);
socket(...);
bind (fd,
listen (fd,

close (fd) ;

retval

retval SOMAXCONN) ;

