IP Addresses, DNS CSE 333 Winter 2020

Instructor: Justin Hsia

Teaching Assistants:

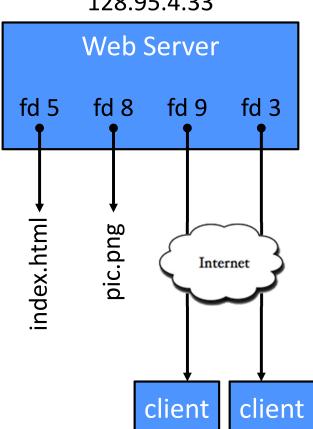
Andrew Hu Cheng Ni Guramrit Singh Rehaan Bhimani Zachary Keyes Austin Chan Cosmo Wang Mengqi Chen Renshu Gu Brennan Stein Diya Joy Pat Kosakanchit Travis McGaha

Administrivia

- hw3 is due Thursday (2/27)
 - Usual reminders: don't forget to tag, clone elsewhere, and recompile
- hw4 out on Friday (2/28)
- Exercise 15 will be released on Thursday
 - Related to section this week
 - Can start looking at it early; we'll finish covering material on Friday

Lecture Outline

- Network Programming
 - Sockets API
 - Network Addresses
 - DNS Lookup


Files and File Descriptors

- * Remember open(), read(), write(), and close()?
 - POSIX system calls for interacting with files
 - **open**() returns a file descriptor
 - An integer that represents an open file
 - This file descriptor is then passed to read(), write(), and close()
 - Inside the OS, the file descriptor is used to index into a table that keeps track of any OS-level state associated with the file, such as the file position

Networks and Sockets

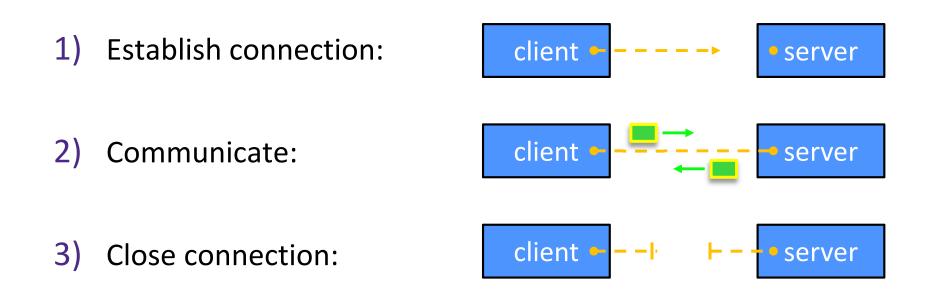
- UNIX likes to make *all* I/O look like file I/O
 - You use read() and write() to communicate with remote computers over the network!
 - A file descriptor use for network communications is called a socket
 - Just like with files:
 - Your program can have multiple network channels open at once
 - You need to pass a file descriptor to read() and write() to let the OS know which network channel to use

File Descriptor Table

128.95.4.33

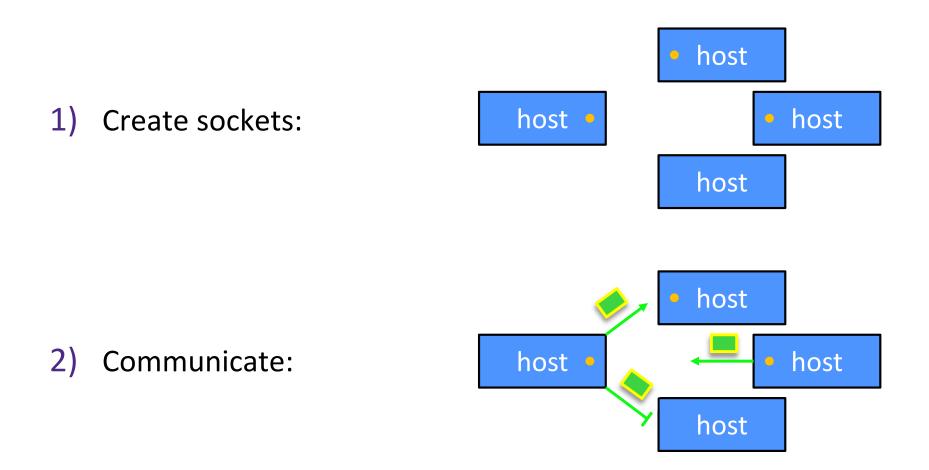
OS's File Descriptor Table for the Process

File Descriptor	Туре	Connection
0	pipe	stdin (console)
1	pipe	stdout (console)
2	pipe	stderr (console)
3	TCP socket	local: 128.95.4.33:80 remote: 44.1.19.32:7113
5	file	index.html
8	file	pic.png
9	TCP socket	local: 128.95.4.33:80 remote: 102.12.3.4:5544


Types of Sockets

* Stream sockets - we will focus here in 333

- For connection-oriented, point-to-point, reliable byte streams
 - Using TCP, SCTP, or other stream transports
- Datagram sockets
 - For connection-less, one-to-many, unreliable packets
 - Using UDP or other packet transports
- Raw sockets
 - For layer-3 communication (raw IP packet manipulation)


Stream Sockets

- Typically used for client-server communications
 - Client: An application that establishes a connection to a server
 - Server: An application that receives connections from clients
 - Can also be used for other forms of communication like peer-topeer

Datagram Sockets

- Often used as a building block
 - No flow control, ordering, or reliability, so used less frequently
 - *e.g.* streaming media applications or DNS lookups

The Sockets API

- Berkeley sockets originated in 4.2BSD Unix (1983)
 - It is the standard API for network programming
 - Available on most OSs
 - 🙀 🛯 Written in C
- POSIX Socket API
 - A slight update of the Berkeley sockets API
 - A few functions were deprecated or replaced
 - Better support for multi-threading was added

Socket API: Client TCP Connection

- We'll start by looking at the API from the point of view of a client connecting to a server over TCP
- There are five steps:
 - Figure out the IP address and port to which to connect A July Create a socket Connect the socket to the remote server
- $new \neq 2)$

 - 4) read() and write() data using the socket
 - 5) Close the socket

Step 1: Figure Out IP Address and Port

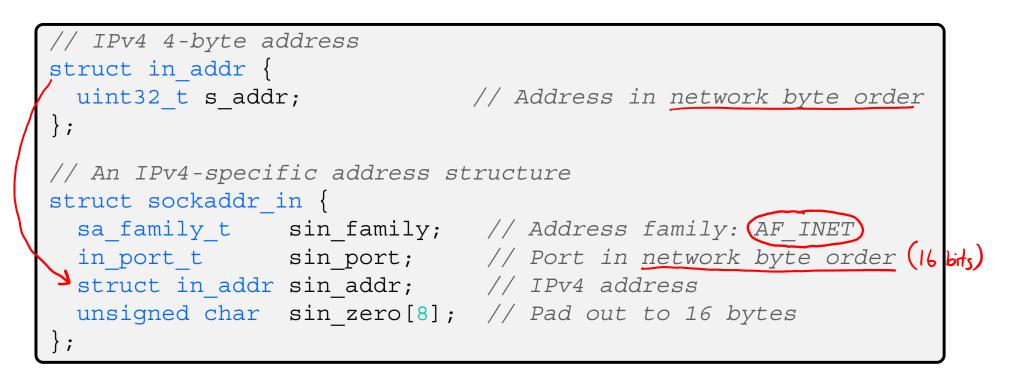
- Several parts:
 - Network addresses
 - Data structures for address info
 - DNS (Domain Name System) finding IP addresses

IPv4 Network Addresses

- An IPv4 address is a 4-byte tuple
 - For humans, written in "dotted-decimal notation"
 - *e.g.* 128.95.4.1 (80:5f:04:01 in hex)
- IPv4 address exhaustion
 - There are $2^{32} \approx 4.3$ billion IPv4 addresses
 - There are ≈ 7.77 billion people in the world (February 2020)

IPv6 Network Addresses

An IPv6 address is a 16-byte tuple

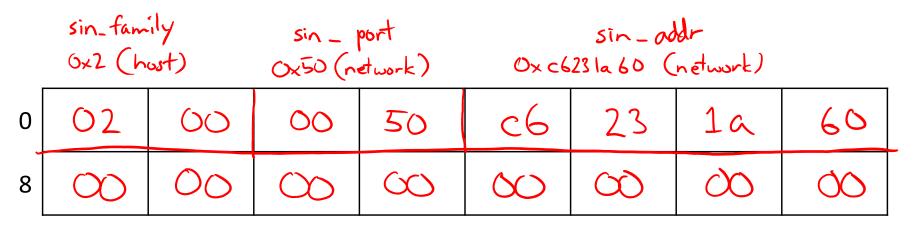

(2¹²⁸ addresses)

- Typically written in "hextets" (groups of 4 hex digits)
- Can omit leading zeros in hextets
- Double-colon replaces consecutive sections of zeros
- e.g. 2d01: 0db8:f188:0000:0000:0000:0000:1f33
 - Shorthand: 2d01:db8:f188: 1f33
- Transition is still ongoing
 - IPv4-mapped IPv6 addresses
 - 128.95.4.1 mapped to ::ffff:128.95.4.1 or ::ffff:805f:401

Linux Socket Addresses

- Structures, constants, and helper functions available in #include <arpa/inet.h>
- Addresses stored in network byte order (big endian)
- Converting between host and network byte orders:
 - uint32 t htonl (uint32 t hostlong);
 - uint32 t ntohl(uint32 t netlong);
 - 'h' for host byte order and 'n' for network byte order
 - Also versions with 's' for short (uint16 t instead)
- How to handle both IPv4 and IPv6?
 - Use C structs for each, but make them somewhat similar
 - Use defined constants to differentiate when to use each: (many other socket) AF INET for IPv4 and AF INET6 for IPv6 address family

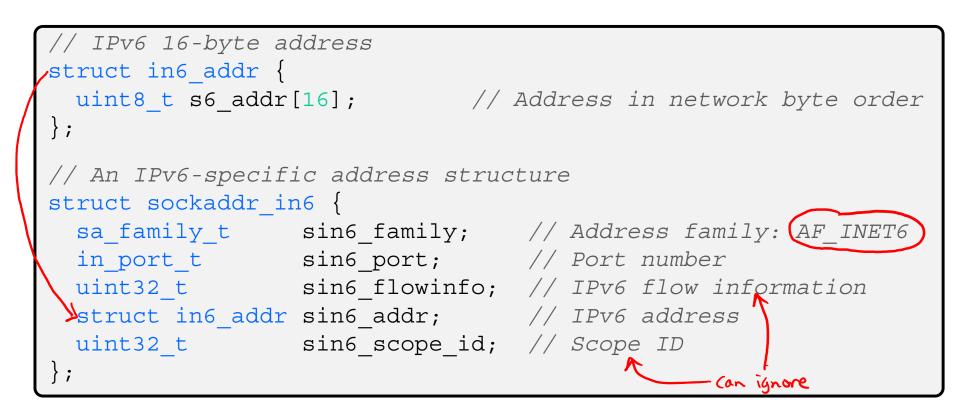
IPv4 Address Structures

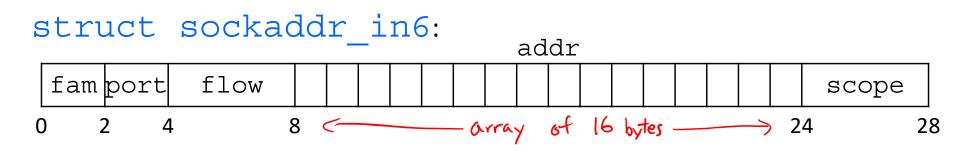


struct sockaddr_in:

	family	port	addr	zero
0	2	2 4	ξ ξ	3 16

Practice Question


- Assume we have a struct sockaddr_in that represents a socket connected to 198.35.26.96 (c6:23:1a:60) on port 80 (0x50) stored on a little-endian machine.
 - $AF_INET = 2$
 - Fill in the bytes in memory below (in hex):



OXO (host)

sin_Zero

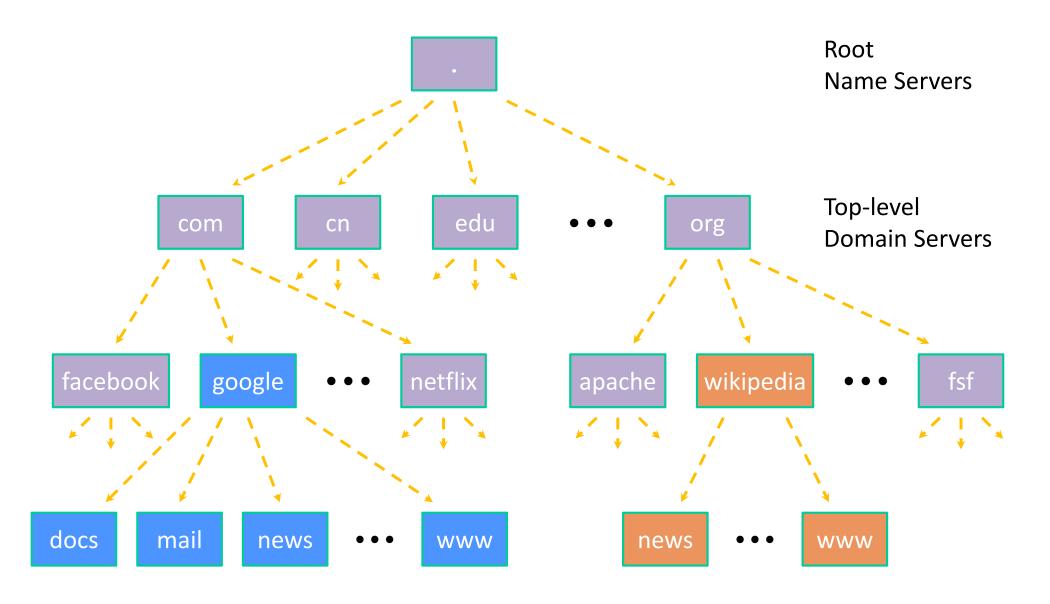
IPv6 Address Structures

Generic Address Structures


```
// A mostly-protocol-independent address structure.
// Pointer to this is parameter type for socket system calls.
struct sockaddr {
 sa_family_t sa_family; // Address family (AF_* constants)
             sa data[14]; // Socket address (size varies
 char
                           // according to socket domain)
};
// A structure big enough to hold either IPv4 or IPv6 structs
                                                 (at least 28 bytes)
struct sockaddr storage {
 sa_family_t ss_family; // Address family
 // padding and alignment; don't worry about the details
 char ss pad1[ SS PAD1SIZE];
 int64 t ss align;
 char ss pad2[ SS PAD2SIZE];
};
```

Commonly create struct sockaddr_storage, then pass pointer cast as struct sockaddr* to connect()

Address Conversion


address struct in_addr* or family struct in6-addr* * const char* inet_ntop(int af, const void* src, char* dst, socklen_t size);

- Converts network addr in src into buffer dst of size size
- Returns dst on success; NULL on error

Domain Name System

- People tend to use DNS names, not IP addresses
 - The Sockets API lets you convert between the two
 - It's a complicated process, though:
 - A given DNS name can have many IP addresses
 - Many different IP addresses can map to the same DNS name
 - An IP address will reverse map into at most one DNS name
 - A DNS lookup may require interacting with many DNS servers
- You can use the Linux program "dig" to explore DNS
 - dig @server name type (+short)
 - server: specific name server to query
 - type: A (IPv4), AAAA (IPv6), ANY (includes all types)

DNS Hierarchy

Resolving DNS Names

- The POSIX way is to use getaddrinfo()
 - A complicated system call found in #include <netdb.h>
 - - Tell getaddrinfo() which host and port you want resolved
 - String representation for host: DNS name or IP address
 - Set up a "hints" structure with constraints you want respected
 - getaddrinfo() gives you a list of results packed into an "addrinfo" structure/linked list
 - Returns 0 on success; returns negative number on failure
 - Free the struct addrinfo later using freeaddrinfo() recursively frees res linked list

getaddrinfo

- * getaddrinfo() arguments:
 - hostname domain name or IP address string

<pre>struct addrinfo {</pre>		
<pre>int ai_flags;</pre>	// additional flags	
<pre>int ai_family;</pre>	// AF_INET, AF_INET6, AF_UNSPEC	
<pre>int ai_socktype;</pre>	// SOCK_STREAM, SOCK_DGRAM, (0)	
<pre>int ai_protocol;</pre>	// IPPROTO_TCP, IPPROTO_UDP, 0	
<pre>size_t ai_addrlen;</pre>	// length of socket addr in bytes	
🛠 struct sockaddr* ai_addr;	// pointer to socket addr	
<pre>char* ai_canonname;</pre>	// canonical name	
<pre>struct addrinfo* ai_next;</pre>	// can form a linked list	
};		

DNS Lookup Procedure

<pre>struct addrinfo {</pre>			
<pre>int ai_flags;</pre>	// additional flags		
<pre>int ai_family;</pre>	// AF_INET, AF_INET6, AF_UNSPEC		
<pre>int ai_socktype;</pre>	// SOCK_STREAM, SOCK_DGRAM, 0		
<pre>int ai_protocol;</pre>	// IPPROTO_TCP, IPPROTO_UDP, 0		
<pre>size_t ai_addrlen;</pre>	<pre>// length of socket addr in bytes</pre>		
<pre>struct sockaddr* ai_addr;</pre>	// pointer to socket addr		
<pre>char* ai_canonname;</pre>	// canonical name		
<pre>struct addrinfo* ai_next;</pre>	// can form a linked list		
};			

- 1) Create a struct addrinfo hints
- 2) Zero out hints for "defaults"
- 3) Set specific fields of hints as desired
- 4) Call getaddrinfo() using &hints
- 5) Resulting linked list res will have all fields appropriately set
- See dnsresolve.cc